test_inference_model_io.py 17.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import importlib
16
import os
17
import tempfile
18
import unittest
19
import warnings
20

21 22
import numpy as np

23
import paddle
24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
26 27 28
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
29
from paddle.fluid.compiler import CompiledProgram
30
from paddle.fluid.framework import Program, program_guard
31 32
from paddle.fluid.io import (
    load_inference_model,
33
    save_inference_model,
34 35
    save_persistables,
)
36

37
paddle.enable_static()
38 39


40
class InferModel:
41 42 43 44 45
    def __init__(self, list):
        self.program = list[0]
        self.feed_var_names = list[1]
        self.fetch_vars = list[2]

46

47
class TestBook(unittest.TestCase):
48
    def test_fit_line_inference_model(self):
49 50 51
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model")
        UNI_MODEL_DIR = os.path.join(root_path.name, "inference_model1")
52 53 54

        init_program = Program()
        program = Program()
55 56 57 58 59 60 61

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

62 63 64
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
65
            avg_cost = paddle.mean(cost)
66 67 68

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
69 70 71 72 73 74

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

75
        for i in range(100):
76 77 78
            tensor_x = np.array([[1, 1], [1, 2], [3, 4], [5, 2]]).astype(
                "float32"
            )
D
dzhwinter 已提交
79
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
80

81 82 83 84 85
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )
86

87
        # Separated model and unified model
88
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
89 90 91 92 93 94 95 96 97
        save_inference_model(
            UNI_MODEL_DIR,
            ["x", "y"],
            [avg_cost],
            exe,
            program,
            'model',
            'params',
        )
98
        main_program = program.clone()._prune_with_input(
99 100
            feeded_var_names=["x", "y"], targets=[avg_cost]
        )
101 102
        params_str = save_persistables(exe, None, main_program, None)

103 104 105
        expected = exe.run(
            program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]
        )[0]
106

107
        importlib.reload(executor)  # reload to build a new scope
108

109
        model_0 = InferModel(load_inference_model(MODEL_DIR, exe))
110 111
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
112
        model_1 = InferModel(
113 114
            load_inference_model(None, exe, model_str, params_str)
        )
115 116

        for model in [model_0, model_1]:
117 118 119 120 121 122 123 124
            outs = exe.run(
                model.program,
                feed={
                    model.feed_var_names[0]: tensor_x,
                    model.feed_var_names[1]: tensor_y,
                },
                fetch_list=model.fetch_vars,
            )
125 126 127 128 129 130 131
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

132 133
        root_path.cleanup()

134 135 136 137 138 139 140 141
        self.assertRaises(
            ValueError,
            fluid.io.load_inference_model,
            None,
            exe,
            model_str,
            None,
        )
142 143


D
dzhwinter 已提交
144 145
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
146 147
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model2")
D
dzhwinter 已提交
148 149 150 151 152 153 154 155 156 157
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

158 159 160
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
161
            avg_cost = paddle.mean(cost)
D
dzhwinter 已提交
162 163 164 165 166

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
167
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
168
        root_path.cleanup()
D
dzhwinter 已提交
169

170
    def test_save_inference_model_with_auc(self):
171 172
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model4")
173 174 175 176 177 178
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
179
            y = layers.data(name='y', shape=[1], dtype='int32')
180
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
181 182
            acc = paddle.static.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = paddle.static.auc(
183 184
                input=predict, label=y
            )
185 186 187
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=y, reduction='none', use_softmax=False
            )
188
            avg_cost = paddle.mean(x=cost)
189 190 191 192 193 194

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
195 196 197
            save_inference_model(
                MODEL_DIR, ["x", "y"], [avg_cost], exe, program
            )
198
            root_path.cleanup()
199 200 201 202
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
203

T
tangwei12 已提交
204 205
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
206 207
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model3")
T
tangwei12 已提交
208 209 210 211 212 213 214 215 216 217
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

218 219 220
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
221
            avg_cost = paddle.mean(cost)
T
tangwei12 已提交
222 223 224 225 226 227 228 229

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
230 231
            loss_name=avg_cost.name
        )
T
tangwei12 已提交
232

C
chengduo 已提交
233
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
234 235 236 237 238
        self.assertRaises(
            TypeError,
            save_inference_model,
            [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog],
        )
239
        root_path.cleanup()
T
tangwei12 已提交
240 241


242 243
class TestSaveInferenceModelNew(unittest.TestCase):
    def test_save_and_load_inference_model(self):
244 245
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model5")
246 247 248 249 250 251 252 253 254 255
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

256 257 258
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
259
            avg_cost = paddle.mean(cost)
260 261 262 263 264 265 266 267 268 269

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
270
        for i in range(3):
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )

        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            None,
            ['x', 'y'],
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR + "/",
            [x, y],
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            ['x', 'y'],
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            'x',
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            [x, y],
            ['avg_cost'],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            [x, y],
            'avg_cost',
            exe,
        )
325 326 327

        model_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(model_path)
328 329 330 331 332 333 334 335
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR + "_isdir",
            [x, y],
            [avg_cost],
            exe,
        )
336 337 338 339
        os.rmdir(model_path)

        params_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(params_path)
340 341 342 343 344 345 346 347
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR + "_isdir",
            [x, y],
            [avg_cost],
            exe,
        )
348 349
        os.rmdir(params_path)

350 351 352
        paddle.static.io.save_inference_model(
            MODEL_DIR, [x, y], [avg_cost], exe
        )
353 354 355 356

        self.assertTrue(os.path.exists(MODEL_DIR + ".pdmodel"))
        self.assertTrue(os.path.exists(MODEL_DIR + ".pdiparams"))

357 358 359
        expected = exe.run(
            program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]
        )[0]
360

361
        importlib.reload(executor)  # reload to build a new scope
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        self.assertRaises(
            ValueError, paddle.static.load_inference_model, None, exe
        )
        self.assertRaises(
            ValueError, paddle.static.load_inference_model, MODEL_DIR + "/", exe
        )
        self.assertRaises(
            ValueError, paddle.static.load_inference_model, [MODEL_DIR], exe
        )
        self.assertRaises(
            ValueError,
            paddle.static.load_inference_model,
            MODEL_DIR,
            exe,
            pserver_endpoints=None,
        )
        self.assertRaises(
            ValueError,
            paddle.static.load_inference_model,
            MODEL_DIR,
            exe,
            unsupported_param=None,
        )
        self.assertRaises(
            (TypeError, ValueError),
            paddle.static.load_inference_model,
            None,
            exe,
            model_filename="illegal",
            params_filename="illegal",
        )

        model = InferModel(
            paddle.static.io.load_inference_model(MODEL_DIR, exe)
        )
398
        root_path.cleanup()
399

400 401 402 403 404 405 406 407
        outs = exe.run(
            model.program,
            feed={
                model.feed_var_names[0]: tensor_x,
                model.feed_var_names[1]: tensor_y,
            },
            fetch_list=model.fetch_vars,
        )
408 409 410 411 412
        actual = outs[0]

        self.assertEqual(model.feed_var_names, ["x", "y"])
        self.assertEqual(len(model.fetch_vars), 1)
        self.assertEqual(expected, actual)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        # test save_to_file content type should be bytes
        self.assertRaises(ValueError, paddle.static.io.save_to_file, '', 123)
        # test _get_valid_program
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, 0)
        p = Program()
        cp = CompiledProgram(p)
        paddle.static.io._get_valid_program(cp)
        self.assertTrue(paddle.static.io._get_valid_program(cp) is p)
        cp._program = None
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, cp)

    def test_serialize_program_and_persistables(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

435 436 437
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
438
            avg_cost = paddle.mean(cost)
439 440 441 442 443 444 445 446 447 448

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
449
        for i in range(3):
450 451 452 453 454
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )
455

456 457 458 459 460 461 462 463
        # test if return type of serialize_program is bytes
        res1 = paddle.static.io.serialize_program([x, y], [avg_cost])
        self.assertTrue(isinstance(res1, bytes))
        # test if return type of serialize_persistables is bytes
        res2 = paddle.static.io.serialize_persistables([x, y], [avg_cost], exe)
        self.assertTrue(isinstance(res2, bytes))
        # test if variables in program is empty
        res = paddle.static.io._serialize_persistables(Program(), None)
464
        self.assertIsNone(res)
465 466 467 468 469 470 471
        self.assertRaises(
            TypeError,
            paddle.static.io.deserialize_persistables,
            None,
            None,
            None,
        )
472

473 474 475 476 477 478 479 480 481 482 483
    def test_normalize_program(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

484 485 486
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
487
            avg_cost = paddle.mean(cost)
488 489 490 491 492 493 494 495 496 497

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
498
        for i in range(3):
499 500 501 502 503
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )
504 505 506 507 508

        # test if return type of serialize_program is bytes
        res = paddle.static.normalize_program(program, [x, y], [avg_cost])
        self.assertTrue(isinstance(res, Program))
        # test program type
509 510 511
        self.assertRaises(
            TypeError, paddle.static.normalize_program, None, [x, y], [avg_cost]
        )
512
        # test feed_vars type
513 514 515
        self.assertRaises(
            TypeError, paddle.static.normalize_program, program, 'x', [avg_cost]
        )
516
        # test fetch_vars type
517 518 519 520 521 522 523
        self.assertRaises(
            TypeError,
            paddle.static.normalize_program,
            program,
            [x, y],
            'avg_cost',
        )
524

525

526 527 528 529
class TestLoadInferenceModelError(unittest.TestCase):
    def test_load_model_not_exist(self):
        place = core.CPUPlace()
        exe = executor.Executor(place)
530 531 532
        self.assertRaises(
            ValueError, load_inference_model, './test_not_exist_dir', exe
        )
533 534


535 536
if __name__ == '__main__':
    unittest.main()