test_inference_model_io.py 17.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import importlib
16
import os
17
import tempfile
18
import unittest
19
import warnings
20

21 22
import numpy as np

23
import paddle
24 25
import paddle.fluid as fluid
import paddle.fluid.core as core
26 27 28
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
29
from paddle.fluid.compiler import CompiledProgram
30
from paddle.fluid.framework import Program, program_guard
31 32
from paddle.fluid.io import (
    load_inference_model,
33
    save_inference_model,
34 35
    save_persistables,
)
36

37
paddle.enable_static()
38 39


40
class InferModel:
41 42 43 44 45
    def __init__(self, list):
        self.program = list[0]
        self.feed_var_names = list[1]
        self.fetch_vars = list[2]

46

47
class TestBook(unittest.TestCase):
48
    def test_fit_line_inference_model(self):
49 50 51
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model")
        UNI_MODEL_DIR = os.path.join(root_path.name, "inference_model1")
52 53 54

        init_program = Program()
        program = Program()
55 56 57 58 59 60 61

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

62 63 64
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
65
            avg_cost = paddle.mean(cost)
66 67 68

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
69 70 71 72 73 74

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

75
        for i in range(100):
76 77 78
            tensor_x = np.array([[1, 1], [1, 2], [3, 4], [5, 2]]).astype(
                "float32"
            )
D
dzhwinter 已提交
79
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
80

81 82 83 84 85
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )
86

87
        # Separated model and unified model
88
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
89 90 91 92 93 94 95 96 97
        save_inference_model(
            UNI_MODEL_DIR,
            ["x", "y"],
            [avg_cost],
            exe,
            program,
            'model',
            'params',
        )
98
        main_program = program.clone()._prune_with_input(
99 100
            feeded_var_names=["x", "y"], targets=[avg_cost]
        )
101 102
        params_str = save_persistables(exe, None, main_program, None)

103 104 105
        expected = exe.run(
            program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]
        )[0]
106

107
        importlib.reload(executor)  # reload to build a new scope
108

109
        model_0 = InferModel(load_inference_model(MODEL_DIR, exe))
110 111
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
112
        model_1 = InferModel(
113 114
            load_inference_model(None, exe, model_str, params_str)
        )
115 116

        for model in [model_0, model_1]:
117 118 119 120 121 122 123 124
            outs = exe.run(
                model.program,
                feed={
                    model.feed_var_names[0]: tensor_x,
                    model.feed_var_names[1]: tensor_y,
                },
                fetch_list=model.fetch_vars,
            )
125 126 127 128 129 130 131
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

132 133
        root_path.cleanup()

134 135 136 137 138 139 140 141
        self.assertRaises(
            ValueError,
            fluid.io.load_inference_model,
            None,
            exe,
            model_str,
            None,
        )
142 143


D
dzhwinter 已提交
144 145
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
146 147
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model2")
D
dzhwinter 已提交
148 149 150 151 152 153 154 155 156 157
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

158 159 160
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
161
            avg_cost = paddle.mean(cost)
D
dzhwinter 已提交
162 163 164 165 166

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
167
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
168
        root_path.cleanup()
D
dzhwinter 已提交
169

170
    def test_save_inference_model_with_auc(self):
171 172
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model4")
173 174 175 176 177 178
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
179
            y = layers.data(name='y', shape=[1], dtype='int32')
180
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
181 182
            acc = paddle.static.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = paddle.static.auc(
183 184
                input=predict, label=y
            )
185
            cost = fluid.layers.cross_entropy(input=predict, label=y)
186
            avg_cost = paddle.mean(x=cost)
187 188 189 190 191 192

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
193 194 195
            save_inference_model(
                MODEL_DIR, ["x", "y"], [avg_cost], exe, program
            )
196
            root_path.cleanup()
197 198 199 200
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
201

T
tangwei12 已提交
202 203
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
204 205
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model3")
T
tangwei12 已提交
206 207 208 209 210 211 212 213 214 215
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

216 217 218
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
219
            avg_cost = paddle.mean(cost)
T
tangwei12 已提交
220 221 222 223 224 225 226 227

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
228 229
            loss_name=avg_cost.name
        )
T
tangwei12 已提交
230

C
chengduo 已提交
231
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
232 233 234 235 236
        self.assertRaises(
            TypeError,
            save_inference_model,
            [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog],
        )
237
        root_path.cleanup()
T
tangwei12 已提交
238 239


240 241
class TestSaveInferenceModelNew(unittest.TestCase):
    def test_save_and_load_inference_model(self):
242 243
        root_path = tempfile.TemporaryDirectory()
        MODEL_DIR = os.path.join(root_path.name, "inference_model5")
244 245 246 247 248 249 250 251 252 253
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

254 255 256
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
257
            avg_cost = paddle.mean(cost)
258 259 260 261 262 263 264 265 266 267

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
268
        for i in range(3):
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )

        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            None,
            ['x', 'y'],
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR + "/",
            [x, y],
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            ['x', 'y'],
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            'x',
            [avg_cost],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            [x, y],
            ['avg_cost'],
            exe,
        )
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR,
            [x, y],
            'avg_cost',
            exe,
        )
323 324 325

        model_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(model_path)
326 327 328 329 330 331 332 333
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR + "_isdir",
            [x, y],
            [avg_cost],
            exe,
        )
334 335 336 337
        os.rmdir(model_path)

        params_path = MODEL_DIR + "_isdir.pdmodel"
        os.makedirs(params_path)
338 339 340 341 342 343 344 345
        self.assertRaises(
            ValueError,
            paddle.static.save_inference_model,
            MODEL_DIR + "_isdir",
            [x, y],
            [avg_cost],
            exe,
        )
346 347
        os.rmdir(params_path)

348 349 350
        paddle.static.io.save_inference_model(
            MODEL_DIR, [x, y], [avg_cost], exe
        )
351 352 353 354

        self.assertTrue(os.path.exists(MODEL_DIR + ".pdmodel"))
        self.assertTrue(os.path.exists(MODEL_DIR + ".pdiparams"))

355 356 357
        expected = exe.run(
            program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]
        )[0]
358

359
        importlib.reload(executor)  # reload to build a new scope
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        self.assertRaises(
            ValueError, paddle.static.load_inference_model, None, exe
        )
        self.assertRaises(
            ValueError, paddle.static.load_inference_model, MODEL_DIR + "/", exe
        )
        self.assertRaises(
            ValueError, paddle.static.load_inference_model, [MODEL_DIR], exe
        )
        self.assertRaises(
            ValueError,
            paddle.static.load_inference_model,
            MODEL_DIR,
            exe,
            pserver_endpoints=None,
        )
        self.assertRaises(
            ValueError,
            paddle.static.load_inference_model,
            MODEL_DIR,
            exe,
            unsupported_param=None,
        )
        self.assertRaises(
            (TypeError, ValueError),
            paddle.static.load_inference_model,
            None,
            exe,
            model_filename="illegal",
            params_filename="illegal",
        )

        model = InferModel(
            paddle.static.io.load_inference_model(MODEL_DIR, exe)
        )
396
        root_path.cleanup()
397

398 399 400 401 402 403 404 405
        outs = exe.run(
            model.program,
            feed={
                model.feed_var_names[0]: tensor_x,
                model.feed_var_names[1]: tensor_y,
            },
            fetch_list=model.fetch_vars,
        )
406 407 408 409 410
        actual = outs[0]

        self.assertEqual(model.feed_var_names, ["x", "y"])
        self.assertEqual(len(model.fetch_vars), 1)
        self.assertEqual(expected, actual)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        # test save_to_file content type should be bytes
        self.assertRaises(ValueError, paddle.static.io.save_to_file, '', 123)
        # test _get_valid_program
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, 0)
        p = Program()
        cp = CompiledProgram(p)
        paddle.static.io._get_valid_program(cp)
        self.assertTrue(paddle.static.io._get_valid_program(cp) is p)
        cp._program = None
        self.assertRaises(TypeError, paddle.static.io._get_valid_program, cp)

    def test_serialize_program_and_persistables(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

433 434 435
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
436
            avg_cost = paddle.mean(cost)
437 438 439 440 441 442 443 444 445 446

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
447
        for i in range(3):
448 449 450 451 452
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )
453

454 455 456 457 458 459 460 461
        # test if return type of serialize_program is bytes
        res1 = paddle.static.io.serialize_program([x, y], [avg_cost])
        self.assertTrue(isinstance(res1, bytes))
        # test if return type of serialize_persistables is bytes
        res2 = paddle.static.io.serialize_persistables([x, y], [avg_cost], exe)
        self.assertTrue(isinstance(res2, bytes))
        # test if variables in program is empty
        res = paddle.static.io._serialize_persistables(Program(), None)
462
        self.assertIsNone(res)
463 464 465 466 467 468 469
        self.assertRaises(
            TypeError,
            paddle.static.io.deserialize_persistables,
            None,
            None,
            None,
        )
470

471 472 473 474 475 476 477 478 479 480 481
    def test_normalize_program(self):
        init_program = fluid.default_startup_program()
        program = fluid.default_main_program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

482 483 484
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
485
            avg_cost = paddle.mean(cost)
486 487 488 489 490 491 492 493 494 495

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        tensor_x = np.array([[1, 1], [1, 2], [5, 2]]).astype("float32")
        tensor_y = np.array([[-2], [-3], [-7]]).astype("float32")
496
        for i in range(3):
497 498 499 500 501
            exe.run(
                program,
                feed={'x': tensor_x, 'y': tensor_y},
                fetch_list=[avg_cost],
            )
502 503 504 505 506

        # test if return type of serialize_program is bytes
        res = paddle.static.normalize_program(program, [x, y], [avg_cost])
        self.assertTrue(isinstance(res, Program))
        # test program type
507 508 509
        self.assertRaises(
            TypeError, paddle.static.normalize_program, None, [x, y], [avg_cost]
        )
510
        # test feed_vars type
511 512 513
        self.assertRaises(
            TypeError, paddle.static.normalize_program, program, 'x', [avg_cost]
        )
514
        # test fetch_vars type
515 516 517 518 519 520 521
        self.assertRaises(
            TypeError,
            paddle.static.normalize_program,
            program,
            [x, y],
            'avg_cost',
        )
522

523

524 525 526 527
class TestLoadInferenceModelError(unittest.TestCase):
    def test_load_model_not_exist(self):
        place = core.CPUPlace()
        exe = executor.Executor(place)
528 529 530
        self.assertRaises(
            ValueError, load_inference_model, './test_not_exist_dir', exe
        )
531 532


533 534
if __name__ == '__main__':
    unittest.main()