pybind.cc 17.6 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
QI JUN 已提交
19
#include "gflags/gflags.h"
Q
Qiao Longfei 已提交
20
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
21
#include "paddle/framework/executor.h"
Q
qijun 已提交
22
#include "paddle/framework/feed_fetch_method.h"
23
#include "paddle/framework/framework.pb.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
33
#include "paddle/pybind/exception.h"
Q
qijun 已提交
34
#include "paddle/pybind/pybind.h"
35
#include "paddle/pybind/tensor_py.h"
36
#include "paddle/string/to_string.h"
37

D
Dong Zhihong 已提交
38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
dangqingqing 已提交
40
#include "paddle/platform/cuda_profiler.h"
D
Dong Zhihong 已提交
41
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
42 43
#endif

Q
Qiao Longfei 已提交
44 45 46
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

47
namespace paddle {
48
namespace pybind {
49 50 51
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
52 53
}

Q
QI JUN 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
std::once_flag gflags_init_flag;

// TODO(qijun) move init gflags to init.cc
void InitGflags(std::vector<std::string> &argv) {
  std::call_once(gflags_init_flag, [&]() {
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
    VLOG(1) << "Init commandline: " << line;
  });
}

Q
qijun 已提交
72
bool IsCompileGPU() {
73
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
74 75 76 77 78 79
  return false;
#else
  return true;
#endif
}

80
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
81
  py::module m("core", "C++ core of PaddlePaddle");
82

83 84 85 86
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
87 88
  BindException(m);

89 90 91
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
92
      .def("get_dims",
93
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
94
      .def("set_dims",
Q
qijun 已提交
95
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
96
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
97 98
           })
      .def("alloc_float",
Y
Yu Yang 已提交
99
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
100
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
101
           })
Q
qijun 已提交
102
      .def("alloc_float",
Y
Yu Yang 已提交
103
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
104
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
105 106
           })
      .def("alloc_int",
Y
Yu Yang 已提交
107
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
108
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
109
           })
Q
qijun 已提交
110
      .def("alloc_int",
Y
Yu Yang 已提交
111
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
112
             self.mutable_data<int>(place);
Q
qijun 已提交
113
           })
Y
Yu Yang 已提交
114 115
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
116
      .def("set", PyCPUTensorSetFromArray<double>)
117
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
118
      .def("set", PyCPUTensorSetFromArray<bool>)
119
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
120 121
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
122
      .def("set", PyCUDATensorSetFromArray<double>)
123
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
124
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
125
#endif
126
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
127 128
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
Y
Yancey1989 已提交
129 130
      .def("set_int64_element", TensorSetElement<int64_t>)
      .def("get_int64_element", TensorGetElement<int64_t>)
131 132 133
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
134

135
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
136 137
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
138 139 140
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
141
#ifndef PADDLE_WITH_CUDA
142
            new (&instance) LoDTensor(lod);
143
#else
Y
Yu Yang 已提交
144
             LoD new_lod;
145 146
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
147
             new (&instance) LoDTensor(new_lod);
148
#endif
149
          })
Y
Yu Yang 已提交
150
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
151
      .def("set_lod",
152
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
153
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
154
             self.set_lod(lod);
155
#else
Y
Yu Yang 已提交
156
             LoD new_lod;
157 158 159 160
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
161
           })
162
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
163
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
164
        return self.lod();
165 166 167 168 169
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
170
               [](Vector<size_t> item) ->
171 172 173 174 175 176 177 178
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
179 180
      });

Q
qijun 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
194 195 196 197 198 199 200 201 202
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
203 204 205 206 207 208 209 210 211 212 213
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
214

215
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
216 217 218

All parameter, weight, gradient are variables in Paddle.
)DOC")
219
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
220
      .def("set_int",
221 222
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
223 224 225 226 227 228 229
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
230
      .def("get_tensor",
231 232
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
233 234
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
235 236 237
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
238 239 240 241 242
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
243 244 245
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
246 247 248 249 250 251 252
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
253
      .def("get_net",
D
dongzhihong 已提交
254 255
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
256
           },
Y
Yu Yang 已提交
257
           py::return_value_policy::reference);
258

259
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
260
      .def("var",
261
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
262
             return self.Var(name);
Y
Yu Yang 已提交
263
           },
264
           py::return_value_policy::reference)
265
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
266
      .def(py::init<>())
267
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
268
           py::return_value_policy::reference)
Y
Yu Yang 已提交
269
      .def("drop_kids", &Scope::DropKids);
270

Y
Yu Yang 已提交
271 272
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
273 274
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
275 276 277 278 279 280 281 282 283 284
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
285 286
    return ret_values;
  });
287 288 289 290
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
291
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
292 293 294 295 296
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
297 298 299 300 301
  m.def("inference_optimize", [](ProgramDescBind &origin) {
    ProgramDesc pruned_desc;
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
302 303 304
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
305 306
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
307
  // clang-format off
Y
Yu Yang 已提交
308
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
309 310
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
311
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
312 313 314 315 316
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
317
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
318
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
319
#else
Q
qijun 已提交
320
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
321
#endif
Q
qijun 已提交
322
                  });
D
Dong Zhihong 已提交
323
// clang-format on
Q
qijun 已提交
324

D
Dong Zhihong 已提交
325 326 327
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
328 329 330
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
331

332 333 334
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
335

Y
Yu Yang 已提交
336 337 338 339 340 341 342 343 344 345 346
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
356
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
357 358 359 360 361 362
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
363
      .def("run",
364
           [](OperatorBase &self, const Scope &scope,
365 366 367 368
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
369 370 371 372 373 374 375
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
376 377
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
378
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
379
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
380 381 382 383
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
384

Y
Yu Yang 已提交
385 386 387 388 389 390 391
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
392 393
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
394 395 396 397
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
398

Z
cond op  
zchen0211 已提交
399 400 401 402 403 404 405 406 407 408
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
409
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
410 411 412 413 414 415 416 417 418 419 420
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
421 422
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
423
      .def("run", &Executor::Run);
F
fengjiayi 已提交
424

425
  m.def("unique_integer", UniqueIntegerGenerator);
Q
QI JUN 已提交
426
  m.def("init_gflags", InitGflags);
427

Q
qijun 已提交
428
  m.def("is_compile_gpu", IsCompileGPU);
429
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
430
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
431

F
fengjiayi 已提交
432 433 434 435
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
436

Y
Yu Yang 已提交
437 438 439 440 441 442 443 444 445
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
463
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
464
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
465
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
466 467 468 469

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
470
#endif
Y
Yu Yang 已提交
471

472
  return m.ptr();
L
Luo Tao 已提交
473
}
474
}  // namespace pybind
475
}  // namespace paddle