math_op_patch.py 20.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16 17
import inspect

18
from .. import core
19
from ..framework import Variable, unique_name, static_only
20
from .layer_function_generator import OpProtoHolder
21
from paddle.fluid.dygraph.base import in_declarative_mode
Y
Yang Yu 已提交
22

23
_supported_int_dtype_ = [
24
    core.VarDesc.VarType.BOOL,
25 26 27 28 29 30 31
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

32 33
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

34 35 36 37 38 39 40
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
41
    "__div__": "A / B",
42
    "__truediv__": "A / B",
43
    "__rdiv__": "A /= B",
44 45 46 47 48
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
49
    "__matmul__": "A @ B",
50 51 52 53 54
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
55
    "__ge__": "A >= B",
56 57
}

58 59
_already_patch_variable = False

Y
Yang Yu 已提交
60 61

def monkey_patch_variable():
Y
Yang Yu 已提交
62
    def unique_tmp_name():
Y
Yu Yang 已提交
63
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
64 65 66 67 68 69 70 71

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

72
    def current_block(var):
73
        return var.block.program.current_block()
74 75 76 77 78

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

79 80 81 82
    def create_new_tmp_sparse_var(block, dtype, type):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype, type=type)

Y
Yang Yu 已提交
83 84
    def create_tensor(block, value, dtype, shape):
        value = float(value)
85
        var = create_new_tmp_var(block, dtype)
86 87 88 89 90 91 92 93 94 95 96
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
                'force_cpu': False,
            },
            stop_gradient=True,
        )
H
Hongyu Liu 已提交
97
        var.stop_gradient = True
Y
Yang Yu 已提交
98 99
        return var

Y
Yang Yu 已提交
100
    def create_scalar(block, value, dtype):
101
        return create_tensor(block, value, dtype, shape=[])
Y
Yang Yu 已提交
102

Y
Yang Yu 已提交
103 104 105
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
106 107
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
108
        batch_dim = -1
109
        out_shape = []
110 111
        for i, d in enumerate(ref_var.shape):
            if d < 0:
112 113 114 115 116 117 118
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
119
        assert batch_dim != -1
120 121 122 123 124 125 126 127 128 129 130 131
        block.append_op(
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
            attrs={
                'shape': out_shape,
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim,
            },
            stop_gradient=True,
        )
H
Hongyu Liu 已提交
132 133

        var.stop_gradient = True
Y
Yang Yu 已提交
134 135
        return var

136 137
    @static_only
    def cpu(self):
138
        """
139 140 141
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
142 143 144 145 146
        """
        return self

    @static_only
    def cuda(self):
147
        """
148 149 150
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
151 152 153
        """
        return self

154 155 156
    @static_only
    def place(self):
        """
157
        Variable don't have 'place' interface in static graph mode
158 159 160 161
        But this interface can greatly facilitate dy2static.
        So we give a warnning here and return None.
        """
        warnings.warn(
162
            "Variable do not have 'place' interface for static graph mode, try not to use it. None will be returned."
163 164 165
        )
        return None

Y
Yang Yu 已提交
166 167
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
168 169 170
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
171
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
172

Y
Yang Yu 已提交
173
        Args:
J
Jiabin Yang 已提交
174

Y
Yang Yu 已提交
175
            self(Variable): The source variable
J
Jiabin Yang 已提交
176 177

            dtype: The target data type
Y
Yang Yu 已提交
178 179

        Returns:
J
Jiabin Yang 已提交
180 181 182 183 184 185
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python
186
                import paddle
J
Jiabin Yang 已提交
187
                import paddle.fluid as fluid
188
                paddle.enable_static()
J
Jiabin Yang 已提交
189 190 191
                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
192
                    original_variable = paddle.static.data(name = "new_variable", shape=[2,2], dtype='float32')
J
Jiabin Yang 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
210
        """
211 212
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
213 214 215 216 217 218
        block.append_op(
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype, "out_dtype": out.dtype},
        )
219
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
220 221
        return out

222 223 224
    @static_only
    def append(self, var):
        """
225 226
        **Notes**:
           **The type variable must be LoD Tensor Array.
227

228 229
        """
        if not isinstance(var, Variable):
230
            if in_declarative_mode():
231
                """in dy2static mode, x may be tensorable values such as int, float, np.array"""
232
                from paddle.tensor.creation import to_tensor
233

234 235 236
                var = to_tensor(var)
            else:
                raise TypeError(
237 238 239 240
                    "Required input var should be Variable, but received {}".format(
                        type(var)
                    )
                )
241 242
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
243 244 245 246
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".format(
                    self.type
                )
            )
247
        from paddle.tensor.array import array_length, array_write
248

249 250
        array_write(x=var, i=array_length(self), array=self)

251 252
    @static_only
    def _item(self):
253 254
        """
        In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self.
255 256 257 258
        It will check that the shape must be a 1-D tensor
        """
        if len(self.shape) > 1:
            raise TypeError(
259 260 261 262
                "Required input var should be 1-D Variable, but received {}".format(
                    self.shape
                )
            )
263 264
        return self

265 266 267
    @static_only
    def pop(self, *args):
        """
268
        The type variable must be LoD Tensor Array.
269
        When self is LoDTensorArray, calling pop is similar to Python's pop on list.
270 271 272 273 274 275 276
        This interface is used to simplify dygraph to static graph operations.

        Args:
            self(Variable): The source variable, which must be LOD_TENSOR_ARRAY
            *args: optional, a int means index.
        Returns:
            Variable: self[index]
277
        """
278
        from paddle.jit.dy2static.convert_operators import (
279 280 281
            _run_paddle_pop,
        )

282 283
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
284 285 286 287
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".format(
                    self.type
                )
            )
288 289
        return _run_paddle_pop(self, *args)

290
    def _scalar_op_(var, scale, bias):
291 292
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
293 294 295 296 297 298
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale, "bias": bias},
        )
299 300
        return out

301
    def _neg_(var):
302
        return _scalar_op_(var, -1.0, 0.0)
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

326 327
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
328

329 330
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
331

332 333
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
334

335 336
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
337

338 339 340
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

341 342 343
    def _binary_creator_(
        method_name, op_type, reverse=False, scalar_method=None
    ):
Y
Yang Yu 已提交
344
        def __impl__(self, other_var):
345 346 347 348 349 350 351 352 353
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
354
                    return scalar_method(self, other_var)
355 356 357 358 359 360
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
361 362 363
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
364 365
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
366 367 368 369
                if (
                    op_type == 'elementwise_div'
                    and self.dtype in _supported_int_dtype_
                ):
370 371
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
372
                # but only +, -, *, / can use this method
373 374 375 376 377
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
378

379
            # 2. create variable for scalar
Y
Yang Yu 已提交
380 381 382 383 384
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    for elem in self.shape:
                        if elem < 0:
张春乔 已提交
385 386 387
                            other_var = create_tensor_with_batchsize(
                                self, other_var, lhs_dtype
                            )
Y
Yang Yu 已提交
388
                            break
张春乔 已提交
389 390
                    else:
                        # when break is not triggered, enter the else branch
391 392 393 394 395 396
                        other_var = create_tensor(
                            current_block(self),
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape,
                        )
Y
Yang Yu 已提交
397
                else:
398
                    # add fill_op to current_block
399 400 401
                    other_var = create_scalar(
                        current_block(self), value=other_var, dtype=lhs_dtype
                    )
Y
Yang Yu 已提交
402

403
            # 3. unify right var type to left var
Y
Yang Yu 已提交
404 405 406 407 408 409 410 411
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

412 413 414 415 416 417
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

418
            axis = -1
419
            if other_var.ndim > 0 and other_var.shape[0] == -1:
420 421 422
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
423
                warnings.warn(
424 425 426
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                    % (
                        file_name,
                        line_num,
                        EXPRESSION_MAP[method_name],
                        op_type,
                        op_type,
                        EXPRESSION_MAP[method_name],
                    ),
                    category=DeprecationWarning,
                )
            current_block(self).append_op(
                type=op_type,
                inputs={'X': [self], 'Y': [other_var]},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
Y
Yang Yu 已提交
443 444 445 446 447 448 449 450
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
451
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
452 453 454

        Returns:
            Variable
455 456 457
        """.format(
            comment
        )
Y
Yang Yu 已提交
458 459 460
        __impl__.__name__ = method_name
        return __impl__

461 462 463
    def values(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
464 465 466 467 468 469
        block.append_op(
            type="sparse_values",
            inputs={"x": [var]},
            outputs={"out": [out]},
            attrs={},
        )
470 471 472 473 474
        return out

    def indices(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
475 476 477 478 479 480
        block.append_op(
            type="sparse_indices",
            inputs={"x": [var]},
            outputs={"out": [out]},
            attrs={},
        )
481 482 483 484 485
        return out

    def to_dense(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
486 487 488 489 490 491
        block.append_op(
            type="sparse_to_dense",
            inputs={"x": [var]},
            outputs={"out": [out]},
            attrs={},
        )
492 493
        return out

494 495 496 497
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
498 499
        ('cpu', cpu),
        ('cuda', cuda),
500
        ('place', place),
501
        ('append', append),
502
        ('item', _item),
503
        ('pop', pop),
504 505 506
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
507 508 509 510
        (
            '__add__',
            _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_),
        ),
511
        #  a+b == b+a. Do not need to reverse explicitly
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        (
            '__radd__',
            _binary_creator_(
                '__radd__', 'elementwise_add', False, _scalar_add_
            ),
        ),
        (
            '__sub__',
            _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_),
        ),
        (
            '__rsub__',
            _binary_creator_(
                '__rsub__', 'elementwise_sub', True, _scalar_rsub_
            ),
        ),
        (
            '__mul__',
            _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_),
        ),
532
        #  a*b == b*a. Do not need to reverse explicitly
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        (
            '__rmul__',
            _binary_creator_(
                '__rmul__', 'elementwise_mul', False, _scalar_mul_
            ),
        ),
        (
            '__div__',
            _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_),
        ),
        (
            '__truediv__',
            _binary_creator_(
                '__truediv__', 'elementwise_div', False, _scalar_div_
            ),
        ),
        (
            '__rdiv__',
            _binary_creator_('__rdiv__', 'elementwise_div', True, None),
        ),
        (
            '__rtruediv__',
            _binary_creator_('__rtruediv__', 'elementwise_div', True, None),
        ),
        (
            '__pow__',
            _binary_creator_('__pow__', 'elementwise_pow', False, None),
        ),
        (
            '__rpow__',
            _binary_creator_('__rpow__', 'elementwise_pow', True, None),
        ),
        (
            '__floordiv__',
            _binary_creator_(
                '__floordiv__', 'elementwise_floordiv', False, None
            ),
        ),
        (
            '__mod__',
            _binary_creator_('__mod__', 'elementwise_mod', False, None),
        ),
        (
            '__matmul__',
            _binary_creator_('__matmul__', "matmul_v2", False, None),
        ),
579 580 581 582 583 584
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
585 586 587 588
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
        ('values', values),
        ('indices', indices),
        ('to_dense', to_dense),
589 590 591 592 593 594 595 596 597 598
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
599

600
        for method_name in paddle.tensor.tensor_method_func:
601 602
            if hasattr(Variable, method_name):
                continue
603
            method_impl = getattr(paddle.tensor, method_name, None)
604 605
            if method_impl:
                setattr(Variable, method_name, method_impl)
606

607 608
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
609 610
            if impl:
                setattr(Variable, magic_method, impl)
611

612
    _already_patch_variable = True