math_op_patch.py 19.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16 17
import inspect

18
from .. import core
19
from ..framework import Variable, unique_name, static_only
20
from .layer_function_generator import OpProtoHolder
21
from .control_flow import array_write, array_length
22
from paddle.fluid.dygraph.base import in_declarative_mode
Y
Yang Yu 已提交
23

24
_supported_int_dtype_ = [
25
    core.VarDesc.VarType.BOOL,
26 27 28 29 30 31 32
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

33 34
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

35 36 37 38 39 40 41
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
42
    "__div__": "A / B",
43
    "__truediv__": "A / B",
44
    "__rdiv__": "A /= B",
45 46 47 48 49
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
50
    "__matmul__": "A @ B",
51 52 53 54 55 56 57 58
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

59 60
_already_patch_variable = False

Y
Yang Yu 已提交
61 62

def monkey_patch_variable():
63

Y
Yang Yu 已提交
64
    def unique_tmp_name():
Y
Yu Yang 已提交
65
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
66 67 68 69 70 71 72 73

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

74
    def current_block(var):
75
        return var.block.program.current_block()
76 77 78 79 80

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

81 82 83 84
    def create_new_tmp_sparse_var(block, dtype, type):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype, type=type)

Y
Yang Yu 已提交
85 86
    def create_tensor(block, value, dtype, shape):
        value = float(value)
87
        var = create_new_tmp_var(block, dtype)
88 89 90 91 92 93 94 95 96
        block.append_op(type="fill_constant",
                        outputs={'Out': [var]},
                        attrs={
                            'dtype': var.dtype,
                            'shape': shape,
                            'value': value,
                            'force_cpu': False
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
97
        var.stop_gradient = True
Y
Yang Yu 已提交
98 99
        return var

Y
Yang Yu 已提交
100 101 102
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
103 104 105
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
106 107
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
108
        batch_dim = -1
109
        out_shape = []
110 111
        for i, d in enumerate(ref_var.shape):
            if d < 0:
112 113 114 115 116 117 118
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
119
        assert batch_dim != -1
120 121 122 123 124 125 126 127 128 129
        block.append_op(type='fill_constant_batch_size_like',
                        outputs={'Out': [var]},
                        inputs={'Input': [ref_var]},
                        attrs={
                            'shape': out_shape,
                            'value': value,
                            'input_dim_idx': batch_dim,
                            'output_dim_idx': batch_dim
                        },
                        stop_gradient=True)
H
Hongyu Liu 已提交
130 131

        var.stop_gradient = True
Y
Yang Yu 已提交
132 133
        return var

134 135
    @static_only
    def cpu(self):
136
        """
137 138 139
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
140 141 142 143 144
        """
        return self

    @static_only
    def cuda(self):
145
        """
146 147 148
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
149 150 151
        """
        return self

152 153 154 155 156 157 158 159 160 161 162 163
    @static_only
    def place(self):
        """
        Variable don't have 'place' interface in static mode
        But this interface can greatly facilitate dy2static.
        So we give a warnning here and return None.
        """
        warnings.warn(
            "Variable do not have 'place' interface for static mode, try not to use it. None will be returned."
        )
        return None

Y
Yang Yu 已提交
164 165
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
166 167 168
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
169
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
170

Y
Yang Yu 已提交
171
        Args:
J
Jiabin Yang 已提交
172

Y
Yang Yu 已提交
173
            self(Variable): The source variable
J
Jiabin Yang 已提交
174 175

            dtype: The target data type
Y
Yang Yu 已提交
176 177

        Returns:
J
Jiabin Yang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
208
        """
209 210
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
211 212 213 214 215 216 217
        block.append_op(type="cast",
                        inputs={"X": [self]},
                        outputs={"Out": [out]},
                        attrs={
                            "in_dtype": self.dtype,
                            "out_dtype": out.dtype
                        })
218
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
219 220
        return out

221 222 223 224 225
    @static_only
    def append(self, var):
        """
         **Notes**:
            **The type variable must be LoD Tensor Array.
226

227 228
        """
        if not isinstance(var, Variable):
229 230 231 232 233 234 235 236 237
            if in_declarative_mode():
                """ in dy2static mode, x may be tensorable values such as int, float, np.array
                """
                from paddle.tensor.creation import to_tensor
                var = to_tensor(var)
            else:
                raise TypeError(
                    "Required input var should be Variable, but received {}".
                    format(type(var)))
238 239
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
240 241
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
242 243
        array_write(x=var, i=array_length(self), array=self)

244 245
    @static_only
    def _item(self):
246 247
        """
        In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self.
248 249 250 251 252 253 254 255
        It will check that the shape must be a 1-D tensor
        """
        if len(self.shape) > 1:
            raise TypeError(
                "Required input var should be 1-D Variable, but received {}".
                format(self.shape))
        return self

256 257 258
    @static_only
    def pop(self, *args):
        """
259
        The type variable must be LoD Tensor Array.
260
        When self is LoDTensorArray, calling pop is similar to Python's pop on list.
261 262 263 264 265 266 267
        This interface is used to simplify dygraph to static graph operations.

        Args:
            self(Variable): The source variable, which must be LOD_TENSOR_ARRAY
            *args: optional, a int means index.
        Returns:
            Variable: self[index]
268 269 270 271 272 273 274 275
        """
        from paddle.fluid.dygraph.dygraph_to_static.convert_operators import _run_paddle_pop
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}"
                .format(self.type))
        return _run_paddle_pop(self, *args)

276
    def _scalar_op_(var, scale, bias):
277 278
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
279 280 281 282 283 284 285
        block.append_op(type="scale",
                        inputs={"X": [var]},
                        outputs={"Out": [out]},
                        attrs={
                            "scale": scale,
                            "bias": bias
                        })
286 287
        return out

288
    def _neg_(var):
289
        return _scalar_op_(var, -1.0, 0.0)
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

313 314
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
315

316 317
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
318

319 320
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
321

322 323
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
324

325 326 327
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

328 329 330 331
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
332

Y
Yang Yu 已提交
333
        def __impl__(self, other_var):
334 335 336 337 338 339 340 341 342
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
343
                    return scalar_method(self, other_var)
344 345 346 347 348 349
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
350 351 352
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
353 354 355 356 357
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
358
                # but only +, -, *, / can use this method
359 360 361 362 363
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
364

365
            # 2. create variable for scalar
Y
Yang Yu 已提交
366 367 368 369 370 371 372 373 374
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
375 376 377 378
                        other_var = create_tensor(current_block(self),
                                                  other_var,
                                                  dtype=lhs_dtype,
                                                  shape=self.shape)
Y
Yang Yu 已提交
379 380 381 382
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
383
                    # add fill_op to current_block
384 385 386
                    other_var = create_scalar(current_block(self),
                                              value=other_var,
                                              dtype=lhs_dtype)
Y
Yang Yu 已提交
387

388
            # 3. unify right var type to left var
Y
Yang Yu 已提交
389 390 391 392 393 394 395 396
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

397 398 399 400 401 402
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

403 404
            axis = -1
            if other_var.shape[0] == -1:
405 406 407
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
408
                warnings.warn(
409 410 411 412
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
413 414
                       op_type, op_type, EXPRESSION_MAP[method_name]),
                    category=DeprecationWarning)
415 416 417 418 419 420 421
            current_block(self).append_op(type=op_type,
                                          inputs={
                                              'X': [self],
                                              'Y': [other_var]
                                          },
                                          outputs={'Out': out},
                                          attrs={'axis': axis})
Y
Yang Yu 已提交
422 423 424 425 426 427 428 429
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
430
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
431 432 433 434 435 436 437

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    def values(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(type="sparse_values",
                        inputs={"x": [var]},
                        outputs={"out": [out]},
                        attrs={})
        return out

    def indices(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(type="sparse_indices",
                        inputs={"x": [var]},
                        outputs={"out": [out]},
                        attrs={})
        return out

    def to_dense(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(type="sparse_to_dense",
                        inputs={"x": [var]},
                        outputs={"out": [out]},
                        attrs={})
        return out

465 466 467 468
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
469 470
        ('cpu', cpu),
        ('cuda', cuda),
471
        ('place', place),
472
        ('append', append),
473
        ('item', _item),
474
        ('pop', pop),
475 476 477
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
478 479
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
480 481 482
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
483 484 485 486 487 488
        ('__sub__',
         _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_)),
        ('__rsub__',
         _binary_creator_('__rsub__', 'elementwise_sub', True, _scalar_rsub_)),
        ('__mul__',
         _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_)),
489 490 491
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
492 493 494 495 496
        ('__div__',
         _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_)),
        ('__truediv__',
         _binary_creator_('__truediv__', 'elementwise_div', False,
                          _scalar_div_)),
497 498
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
499 500
        ('__rtruediv__',
         _binary_creator_('__rtruediv__', 'elementwise_div', True, None)),
501 502 503 504
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
505 506
        ('__floordiv__',
         _binary_creator_('__floordiv__', 'elementwise_floordiv', False, None)),
S
ShenLiang 已提交
507 508
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
509 510
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
511 512 513 514 515 516
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
517 518 519 520
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
        ('values', values),
        ('indices', indices),
        ('to_dense', to_dense),
521 522 523 524 525 526 527 528 529 530
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
531
        for method_name in paddle.tensor.tensor_method_func:
532 533 534 535
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

536 537 538 539
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
            if impl: setattr(Variable, magic_method, impl)

540
    _already_patch_variable = True