math_op_patch.py 20.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import warnings
16 17
import inspect

18
from .. import core
19
from ..framework import Variable, unique_name, static_only
20
from .layer_function_generator import OpProtoHolder
21
from .control_flow import array_write
22
from paddle.fluid.dygraph.base import in_declarative_mode
Y
Yang Yu 已提交
23

24
_supported_int_dtype_ = [
25
    core.VarDesc.VarType.BOOL,
26 27 28 29 30 31 32
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

33 34
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

35 36 37 38 39 40 41
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
42
    "__div__": "A / B",
43
    "__truediv__": "A / B",
44
    "__rdiv__": "A /= B",
45 46 47 48 49
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
50
    "__matmul__": "A @ B",
51 52 53 54 55
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
56
    "__ge__": "A >= B",
57 58
}

59 60
_already_patch_variable = False

Y
Yang Yu 已提交
61 62

def monkey_patch_variable():
Y
Yang Yu 已提交
63
    def unique_tmp_name():
Y
Yu Yang 已提交
64
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
65 66 67 68 69 70 71 72

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

73
    def current_block(var):
74
        return var.block.program.current_block()
75 76 77 78 79

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

80 81 82 83
    def create_new_tmp_sparse_var(block, dtype, type):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype, type=type)

Y
Yang Yu 已提交
84 85
    def create_tensor(block, value, dtype, shape):
        value = float(value)
86
        var = create_new_tmp_var(block, dtype)
87 88 89 90 91 92 93 94 95 96 97
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
                'force_cpu': False,
            },
            stop_gradient=True,
        )
H
Hongyu Liu 已提交
98
        var.stop_gradient = True
Y
Yang Yu 已提交
99 100
        return var

Y
Yang Yu 已提交
101
    def create_scalar(block, value, dtype):
102 103
        # TODO(zhouwei): will change to [] which is 0-D Tensor
        return create_tensor(block, value, dtype, shape=[1])
Y
Yang Yu 已提交
104

Y
Yang Yu 已提交
105 106 107
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
108 109
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
110
        batch_dim = -1
111
        out_shape = []
112 113
        for i, d in enumerate(ref_var.shape):
            if d < 0:
114 115 116 117 118 119 120
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
121
        assert batch_dim != -1
122 123 124 125 126 127 128 129 130 131 132 133
        block.append_op(
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
            attrs={
                'shape': out_shape,
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim,
            },
            stop_gradient=True,
        )
H
Hongyu Liu 已提交
134 135

        var.stop_gradient = True
Y
Yang Yu 已提交
136 137
        return var

138 139
    @static_only
    def cpu(self):
140
        """
141 142 143
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
144 145 146 147 148
        """
        return self

    @static_only
    def cuda(self):
149
        """
150 151 152
        Variable should not have cpu() and cuda() interface.
        But this interface can greatly facilitate dy2static.
        We do nothing here.
153 154 155
        """
        return self

156 157 158 159 160 161 162 163 164 165 166 167
    @static_only
    def place(self):
        """
        Variable don't have 'place' interface in static mode
        But this interface can greatly facilitate dy2static.
        So we give a warnning here and return None.
        """
        warnings.warn(
            "Variable do not have 'place' interface for static mode, try not to use it. None will be returned."
        )
        return None

Y
Yang Yu 已提交
168 169
    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
170 171 172
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
173
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
174

Y
Yang Yu 已提交
175
        Args:
J
Jiabin Yang 已提交
176

Y
Yang Yu 已提交
177
            self(Variable): The source variable
J
Jiabin Yang 已提交
178 179

            dtype: The target data type
Y
Yang Yu 已提交
180 181

        Returns:
J
Jiabin Yang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
212
        """
213 214
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
215 216 217 218 219 220
        block.append_op(
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype, "out_dtype": out.dtype},
        )
221
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
222 223
        return out

224 225 226
    @static_only
    def append(self, var):
        """
227 228
        **Notes**:
           **The type variable must be LoD Tensor Array.
229

230 231
        """
        if not isinstance(var, Variable):
232
            if in_declarative_mode():
233
                """in dy2static mode, x may be tensorable values such as int, float, np.array"""
234
                from paddle.tensor.creation import to_tensor
235

236 237 238
                var = to_tensor(var)
            else:
                raise TypeError(
239 240 241 242
                    "Required input var should be Variable, but received {}".format(
                        type(var)
                    )
                )
243 244
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
245 246 247 248
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".format(
                    self.type
                )
            )
249 250
        from paddle.tensor.array import array_length

251 252
        array_write(x=var, i=array_length(self), array=self)

253 254
    @static_only
    def _item(self):
255 256
        """
        In order to be compatible with the item interface introduced by the dynamic graph, it does nothing but returns self.
257 258 259 260
        It will check that the shape must be a 1-D tensor
        """
        if len(self.shape) > 1:
            raise TypeError(
261 262 263 264
                "Required input var should be 1-D Variable, but received {}".format(
                    self.shape
                )
            )
265 266
        return self

267 268 269
    @static_only
    def pop(self, *args):
        """
270
        The type variable must be LoD Tensor Array.
271
        When self is LoDTensorArray, calling pop is similar to Python's pop on list.
272 273 274 275 276 277 278
        This interface is used to simplify dygraph to static graph operations.

        Args:
            self(Variable): The source variable, which must be LOD_TENSOR_ARRAY
            *args: optional, a int means index.
        Returns:
            Variable: self[index]
279
        """
280
        from paddle.jit.dy2static.convert_operators import (
281 282 283
            _run_paddle_pop,
        )

284 285
        if self.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
286 287 288 289
                "Only Variable with VarType.LOD_TENSOR_ARRAY support `append` method, but received type: {}".format(
                    self.type
                )
            )
290 291
        return _run_paddle_pop(self, *args)

292
    def _scalar_op_(var, scale, bias):
293 294
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
295 296 297 298 299 300
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale, "bias": bias},
        )
301 302
        return out

303
    def _neg_(var):
304
        return _scalar_op_(var, -1.0, 0.0)
305

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

328 329
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
330

331 332
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
333

334 335
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
336

337 338
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
339

340 341 342
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)

343 344 345
    def _binary_creator_(
        method_name, op_type, reverse=False, scalar_method=None
    ):
Y
Yang Yu 已提交
346
        def __impl__(self, other_var):
347 348 349 350 351 352 353 354 355
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
356
                    return scalar_method(self, other_var)
357 358 359 360 361 362
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
363 364 365
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
366 367
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
368 369 370 371
                if (
                    op_type == 'elementwise_div'
                    and self.dtype in _supported_int_dtype_
                ):
372 373
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
374
                # but only +, -, *, / can use this method
375 376 377 378 379
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
380

381
            # 2. create variable for scalar
Y
Yang Yu 已提交
382 383 384 385 386 387 388 389 390
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
391 392 393 394 395 396
                        other_var = create_tensor(
                            current_block(self),
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape,
                        )
Y
Yang Yu 已提交
397 398
                    else:
                        other_var = create_tensor_with_batchsize(
399 400
                            self, other_var, lhs_dtype
                        )
Y
Yang Yu 已提交
401
                else:
402
                    # add fill_op to current_block
403 404 405
                    other_var = create_scalar(
                        current_block(self), value=other_var, dtype=lhs_dtype
                    )
Y
Yang Yu 已提交
406

407
            # 3. unify right var type to left var
Y
Yang Yu 已提交
408 409 410 411 412 413 414 415
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

416 417 418 419 420 421
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

422
            axis = -1
423
            if other_var.ndim > 0 and other_var.shape[0] == -1:
424 425 426
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
427
                warnings.warn(
428 429 430
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
                    % (
                        file_name,
                        line_num,
                        EXPRESSION_MAP[method_name],
                        op_type,
                        op_type,
                        EXPRESSION_MAP[method_name],
                    ),
                    category=DeprecationWarning,
                )
            current_block(self).append_op(
                type=op_type,
                inputs={'X': [self], 'Y': [other_var]},
                outputs={'Out': out},
                attrs={'axis': axis},
            )
Y
Yang Yu 已提交
447 448 449 450 451 452 453 454
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
455
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
456 457 458

        Returns:
            Variable
459 460 461
        """.format(
            comment
        )
Y
Yang Yu 已提交
462 463 464
        __impl__.__name__ = method_name
        return __impl__

465 466 467
    def values(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
468 469 470 471 472 473
        block.append_op(
            type="sparse_values",
            inputs={"x": [var]},
            outputs={"out": [out]},
            attrs={},
        )
474 475 476 477 478
        return out

    def indices(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
479 480 481 482 483 484
        block.append_op(
            type="sparse_indices",
            inputs={"x": [var]},
            outputs={"out": [out]},
            attrs={},
        )
485 486 487 488 489
        return out

    def to_dense(var):
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
490 491 492 493 494 495
        block.append_op(
            type="sparse_to_dense",
            inputs={"x": [var]},
            outputs={"out": [out]},
            attrs={},
        )
496 497
        return out

498 499 500 501
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
502 503
        ('cpu', cpu),
        ('cuda', cuda),
504
        ('place', place),
505
        ('append', append),
506
        ('item', _item),
507
        ('pop', pop),
508 509 510
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
511 512 513 514
        (
            '__add__',
            _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_),
        ),
515
        #  a+b == b+a. Do not need to reverse explicitly
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        (
            '__radd__',
            _binary_creator_(
                '__radd__', 'elementwise_add', False, _scalar_add_
            ),
        ),
        (
            '__sub__',
            _binary_creator_('__sub__', 'elementwise_sub', False, _scalar_sub_),
        ),
        (
            '__rsub__',
            _binary_creator_(
                '__rsub__', 'elementwise_sub', True, _scalar_rsub_
            ),
        ),
        (
            '__mul__',
            _binary_creator_('__mul__', 'elementwise_mul', False, _scalar_mul_),
        ),
536
        #  a*b == b*a. Do not need to reverse explicitly
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        (
            '__rmul__',
            _binary_creator_(
                '__rmul__', 'elementwise_mul', False, _scalar_mul_
            ),
        ),
        (
            '__div__',
            _binary_creator_('__div__', 'elementwise_div', False, _scalar_div_),
        ),
        (
            '__truediv__',
            _binary_creator_(
                '__truediv__', 'elementwise_div', False, _scalar_div_
            ),
        ),
        (
            '__rdiv__',
            _binary_creator_('__rdiv__', 'elementwise_div', True, None),
        ),
        (
            '__rtruediv__',
            _binary_creator_('__rtruediv__', 'elementwise_div', True, None),
        ),
        (
            '__pow__',
            _binary_creator_('__pow__', 'elementwise_pow', False, None),
        ),
        (
            '__rpow__',
            _binary_creator_('__rpow__', 'elementwise_pow', True, None),
        ),
        (
            '__floordiv__',
            _binary_creator_(
                '__floordiv__', 'elementwise_floordiv', False, None
            ),
        ),
        (
            '__mod__',
            _binary_creator_('__mod__', 'elementwise_mod', False, None),
        ),
        (
            '__matmul__',
            _binary_creator_('__matmul__', "matmul_v2", False, None),
        ),
583 584 585 586 587 588
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
589 590 591 592
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
        ('values', values),
        ('indices', indices),
        ('to_dense', to_dense),
593 594 595 596 597 598 599 600 601 602
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
603

604
        for method_name in paddle.tensor.tensor_method_func:
605 606
            if hasattr(Variable, method_name):
                continue
607
            method_impl = getattr(paddle.tensor, method_name, None)
608 609
            if method_impl:
                setattr(Variable, method_name, method_impl)
610

611 612
        for magic_method, origin_method in paddle.tensor.magic_method_func:
            impl = getattr(paddle.tensor, origin_method, None)
613 614
            if impl:
                setattr(Variable, magic_method, impl)
615

616
    _already_patch_variable = True