metrics.py 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
16

17 18 19
import numpy as np

import paddle
20
from paddle import _legacy_C_ops
21

22 23 24 25
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.framework import _non_static_mode, _varbase_creator
from ..fluid.layer_helper import LayerHelper

26
__all__ = []
27 28 29 30 31 32


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


33
class Metric(metaclass=abc.ABCMeta):
34
    r"""
35 36
    Base class for metric, encapsulates metric logic and APIs
    Usage:
37 38 39 40 41 42 43

        .. code-block:: text

            m = SomeMetric()
            for prediction, label in ...:
                m.update(prediction, label)
            m.accumulate()
44

45 46 47 48 49 50 51 52
    Advanced usage for :code:`compute`:

    Metric calculation can be accelerated by calculating metric states
    from model outputs and labels by build-in operators not by Python/NumPy
    in :code:`compute`, metric states will be fetched as NumPy array and
    call :code:`update` with states in NumPy format.
    Metric calculated as follows (operations in Model and Metric are
    indicated with curly brackets, while data nodes not):
53 54 55

        .. code-block:: text

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                 inputs & labels              || ------------------
                       |                      ||
                    {model}                   ||
                       |                      ||
                outputs & labels              ||
                       |                      ||    tensor data
                {Metric.compute}              ||
                       |                      ||
              metric states(tensor)           ||
                       |                      ||
                {fetch as numpy}              || ------------------
                       |                      ||
              metric states(numpy)            ||    numpy data
                       |                      ||
                {Metric.update}               \/ ------------------
71

72
    Examples:
73

74 75 76 77 78 79 80 81 82 83
        For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
        as inputs, we can calculate the correct prediction matrix between
        :code:`pred` and :code:`label` in :code:`compute`.
        For examples, prediction results contains 10 classes, while :code:`pred`
        shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
        and we only need to calculate accurary of top-1 and top-5, we could
        calculate the correct prediction matrix of the top-5 scores of the
        prediction of each sample like follows, while the correct prediction
        matrix shape is [N, 5].

84 85 86 87 88 89 90 91
          .. code-block:: text

              def compute(pred, label):
                  # sort prediction and slice the top-5 scores
                  pred = paddle.argsort(pred, descending=True)[:, :5]
                  # calculate whether the predictions are correct
                  correct = pred == label
                  return paddle.cast(correct, dtype='float32')
92 93 94 95 96 97

        With the :code:`compute`, we split some calculations to OPs (which
        may run on GPU devices, will be faster), and only fetch 1 tensor with
        shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
        :code:`update` can be define as follows:

98 99 100 101 102 103 104 105 106 107 108
          .. code-block:: text

              def update(self, correct):
                  accs = []
                  for i, k in enumerate(self.topk):
                      num_corrects = correct[:, :k].sum()
                      num_samples = len(correct)
                      accs.append(float(num_corrects) / num_samples)
                      self.total[i] += num_corrects
                      self.count[i] += num_samples
                  return accs
109 110 111 112 113 114 115 116 117 118
    """

    def __init__(self):
        pass

    @abc.abstractmethod
    def reset(self):
        """
        Reset states and result
        """
119 120
        raise NotImplementedError(
            "function 'reset' not implemented in {}.".format(
121 122 123
                self.__class__.__name__
            )
        )
124 125 126 127 128 129 130 131 132 133 134 135 136

    @abc.abstractmethod
    def update(self, *args):
        """
        Update states for metric

        Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
        if :code:`compute` is not defined, the inputs of :code:`update`
        will be flatten arguments of **output** of mode and **label** from data:
        :code:`update(output1, output2, ..., label1, label2,...)`

        see :code:`Metric.compute`
        """
137 138
        raise NotImplementedError(
            "function 'update' not implemented in {}.".format(
139 140 141
                self.__class__.__name__
            )
        )
142 143 144 145 146 147 148 149

    @abc.abstractmethod
    def accumulate(self):
        """
        Accumulates statistics, computes and returns the metric value
        """
        raise NotImplementedError(
            "function 'accumulate' not implemented in {}.".format(
150 151 152
                self.__class__.__name__
            )
        )
153 154 155 156 157 158

    @abc.abstractmethod
    def name(self):
        """
        Returns metric name
        """
159 160
        raise NotImplementedError(
            "function 'name' not implemented in {}.".format(
161 162 163
                self.__class__.__name__
            )
        )
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    def compute(self, *args):
        """
        This API is advanced usage to accelerate metric calculating, calulations
        from outputs of model to the states which should be updated by Metric can
        be defined here, where Paddle OPs is also supported. Outputs of this API
        will be the inputs of "Metric.update".

        If :code:`compute` is defined, it will be called with **outputs**
        of model and **labels** from data as arguments, all outputs and labels
        will be concatenated and flatten and each filed as a separate argument
        as follows:
        :code:`compute(output1, output2, ..., label1, label2,...)`

        If :code:`compute` is not defined, default behaviour is to pass
        input to output, so output format will be:
        :code:`return output1, output2, ..., label1, label2,...`

        see :code:`Metric.update`
        """
        return args


class Accuracy(Metric):
    """
    Encapsulates accuracy metric logic.

    Args:
J
Jiaqi Liu 已提交
192
        topk (list[int]|tuple[int]): Number of top elements to look at
193 194 195 196 197
            for computing accuracy. Default is (1,).
        name (str, optional): String name of the metric instance. Default
            is `acc`.

    Example by standalone:
198

199 200
        .. code-block:: python

201 202
          import numpy as np
          import paddle
203

204 205 206 207 208 209
          x = paddle.to_tensor(np.array([
              [0.1, 0.2, 0.3, 0.4],
              [0.1, 0.4, 0.3, 0.2],
              [0.1, 0.2, 0.4, 0.3],
              [0.1, 0.2, 0.3, 0.4]]))
          y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
210

211 212 213 214 215
          m = paddle.metric.Accuracy()
          correct = m.compute(x, y)
          m.update(correct)
          res = m.accumulate()
          print(res) # 0.75
216 217 218


    Example with Model API:
219

220 221
        .. code-block:: python

222 223 224 225
          import paddle
          from paddle.static import InputSpec
          import paddle.vision.transforms as T
          from paddle.vision.datasets import MNIST
226

227 228 229 230 231
          input = InputSpec([None, 1, 28, 28], 'float32', 'image')
          label = InputSpec([None, 1], 'int64', 'label')
          transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
          train_dataset = MNIST(mode='train', transform=transform)

232
          model = paddle.Model(paddle.vision.models.LeNet(), input, label)
233 234 235 236 237 238 239 240
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=paddle.nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())

          model.fit(train_dataset, batch_size=64)
241 242 243

    """

244
    def __init__(self, topk=(1,), name=None, *args, **kwargs):
245
        super().__init__(*args, **kwargs)
246 247 248 249 250 251 252
        self.topk = topk
        self.maxk = max(topk)
        self._init_name(name)
        self.reset()

    def compute(self, pred, label, *args):
        """
253
        Compute the top-k (maximum value in `topk`) indices.
254 255

        Args:
256 257 258 259 260
            pred (Tensor): The predicted value is a Tensor with dtype
                float32 or float64. Shape is [batch_size, d0, ..., dN].
            label (Tensor): The ground truth value is Tensor with dtype
                int64. Shape is [batch_size, d0, ..., 1], or
                [batch_size, d0, ..., num_classes] in one hot representation.
261

262
        Return:
263
            Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
264
        """
265
        pred = paddle.argsort(pred, descending=True)
266 267 268 269 270 271
        pred = paddle.slice(
            pred, axes=[len(pred.shape) - 1], starts=[0], ends=[self.maxk]
        )
        if (len(label.shape) == 1) or (
            len(label.shape) == 2 and label.shape[-1] == 1
        ):
272 273 274 275 276 277 278
            # In static mode, the real label data shape may be different
            # from shape defined by paddle.static.InputSpec in model
            # building, reshape to the right shape.
            label = paddle.reshape(label, (-1, 1))
        elif label.shape[-1] != 1:
            # one-hot label
            label = paddle.argmax(label, axis=-1, keepdim=True)
279 280 281 282 283 284 285 286
        correct = pred == label
        return paddle.cast(correct, dtype='float32')

    def update(self, correct, *args):
        """
        Update the metrics states (correct count and total count), in order to
        calculate cumulative accuracy of all instances. This function also
        returns the accuracy of current step.
287

288
        Args:
289
            correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
290 291 292 293

        Return:
            Tensor: the accuracy of current step.
        """
H
hong 已提交
294
        if isinstance(correct, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
295
            correct = correct.numpy()
296
        num_samples = np.prod(np.array(correct.shape[:-1]))
297 298
        accs = []
        for i, k in enumerate(self.topk):
299
            num_corrects = correct[..., :k].sum()
300 301 302 303 304 305 306 307 308 309
            accs.append(float(num_corrects) / num_samples)
            self.total[i] += num_corrects
            self.count[i] += num_samples
        accs = accs[0] if len(self.topk) == 1 else accs
        return accs

    def reset(self):
        """
        Resets all of the metric state.
        """
310
        self.total = [0.0] * len(self.topk)
311 312 313 314 315 316 317 318
        self.count = [0] * len(self.topk)

    def accumulate(self):
        """
        Computes and returns the accumulated metric.
        """
        res = []
        for t, c in zip(self.total, self.count):
319
            r = float(t) / c if c > 0 else 0.0
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
            res.append(r)
        res = res[0] if len(self.topk) == 1 else res
        return res

    def _init_name(self, name):
        name = name or 'acc'
        if self.maxk != 1:
            self._name = ['{}_top{}'.format(name, k) for k in self.topk]
        else:
            self._name = [name]

    def name(self):
        """
        Return name of metric instance.
        """
        return self._name


class Precision(Metric):
    """
    Precision (also called positive predictive value) is the fraction of
    relevant instances among the retrieved instances. Refer to
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

    Noted that this class manages the precision score only for binary
    classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `precision`.

    Example by standalone:
352

353 354
        .. code-block:: python

355 356
          import numpy as np
          import paddle
357

358 359
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([0, 1, 1, 1])
360

361 362 363 364
          m = paddle.metric.Precision()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 1.0
365 366 367


    Example with Model API:
368

369 370
        .. code-block:: python

371
          import numpy as np
372

373 374
          import paddle
          import paddle.nn as nn
375

376 377
          class Data(paddle.io.Dataset):
              def __init__(self):
378
                  super().__init__()
379 380 381
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
382

383 384
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
385

386 387
              def __len__(self):
                  return self.n
388

389 390 391 392 393 394 395 396 397 398
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=paddle.metric.Precision())
399

400 401
          data = Data()
          model.fit(data, batch_size=16)
402 403 404
    """

    def __init__(self, name='precision', *args, **kwargs):
405
        super().__init__(*args, **kwargs)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        self.tp = 0  # true positive
        self.fp = 0  # false positive
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds (numpy.ndarray): The prediction result, usually the output
                of two-class sigmoid function. It should be a vector (column
                vector or row vector) with data type: 'float64' or 'float32'.
            labels (numpy.ndarray): The ground truth (labels),
                the shape should keep the same as preds.
                The data type is 'int32' or 'int64'.
        """
H
hong 已提交
422
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
423 424 425 426
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
427
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.floor(preds + 0.5).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if pred == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fp = 0

    def accumulate(self):
        """
        Calculate the final precision.

        Returns:
            A scaler float: results of the calculated precision.
        """
        ap = self.tp + self.fp
459
        return float(self.tp) / ap if ap != 0 else 0.0
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Recall(Metric):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

    Refer to:
    https://en.wikipedia.org/wiki/Precision_and_recall

    Noted that this class manages the recall score only for
    binary classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `recall`.

    Example by standalone:
485

486 487
        .. code-block:: python

488 489
          import numpy as np
          import paddle
490

491 492
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([1, 0, 1, 1])
493

494 495 496 497
          m = paddle.metric.Recall()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 2.0 / 3.0
498 499 500


    Example with Model API:
501

502 503
        .. code-block:: python

504
          import numpy as np
505

506 507
          import paddle
          import paddle.nn as nn
508

509 510
          class Data(paddle.io.Dataset):
              def __init__(self):
511
                  super().__init__()
512 513 514
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
515

516 517
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
518

519 520
              def __len__(self):
                  return self.n
521

522 523 524 525 526 527 528 529 530 531
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
532

533 534
          data = Data()
          model.fit(data, batch_size=16)
535 536 537
    """

    def __init__(self, name='recall', *args, **kwargs):
538
        super().__init__(*args, **kwargs)
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        self.tp = 0  # true positive
        self.fn = 0  # false negative
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds(numpy.array): prediction results of current mini-batch,
                the output of two-class sigmoid function.
                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.array): ground truth (labels) of current mini-batch,
                the shape should keep the same as preds.
                Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
H
hong 已提交
555
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
556 557 558 559
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
560
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fn += 1

    def accumulate(self):
        """
        Calculate the final recall.

        Returns:
            A scaler float: results of the calculated Recall.
        """
        recall = self.tp + self.fn
585
        return float(self.tp) / recall if recall != 0 else 0.0
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fn = 0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Auc(Metric):
    """
    The auc metric is for binary classification.
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
    Please notice that the auc metric is implemented with python, which may be a little bit slow.

    The `auc` function creates four local variables, `true_positives`,
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.

    Args:
        curve (str): Specifies the mode of the curve to be computed,
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        num_thresholds (int): The number of thresholds to use when
            discretizing the roc curve. Default is 4095.
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        name (str, optional): String name of the metric instance. Default
            is `auc`.

    "NOTE: only implement the ROC curve type via Python now."

    Example by standalone:
        .. code-block:: python

629 630
          import numpy as np
          import paddle
631

632
          m = paddle.metric.Auc()
633

634 635 636
          n = 8
          class0_preds = np.random.random(size = (n, 1))
          class1_preds = 1 - class0_preds
637

638 639
          preds = np.concatenate((class0_preds, class1_preds), axis=1)
          labels = np.random.randint(2, size = (n, 1))
640

641 642
          m.update(preds=preds, labels=labels)
          res = m.accumulate()
643 644 645


    Example with Model API:
646

647 648
        .. code-block:: python

649 650 651
          import numpy as np
          import paddle
          import paddle.nn as nn
652

653 654
          class Data(paddle.io.Dataset):
              def __init__(self):
655
                  super().__init__()
656 657 658
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
659

660 661
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
662

663 664
              def __len__(self):
                  return self.n
665

666 667 668 669 670
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 2), nn.Softmax())
          )
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
671

672 673
          def loss(x, y):
              return nn.functional.nll_loss(paddle.log(x), y)
674

675 676 677 678 679 680
          model.prepare(
              optim,
              loss=loss,
              metrics=paddle.metric.Auc())
          data = Data()
          model.fit(data, batch_size=16)
681 682
    """

683 684 685
    def __init__(
        self, curve='ROC', num_thresholds=4095, name='auc', *args, **kwargs
    ):
686
        super().__init__(*args, **kwargs)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        self._curve = curve
        self._num_thresholds = num_thresholds

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)
        self._name = name

    def update(self, preds, labels):
        """
        Update the auc curve with the given predictions and labels.

        Args:
            preds (numpy.array): An numpy array in the shape of
                (batch_size, 2), preds[i][j] denotes the probability of
                classifying the instance i into the class j.
            labels (numpy.array): an numpy array in the shape of
                (batch_size, 1), labels[i] is either o or 1,
                representing the label of the instance i.
        """
H
hong 已提交
707
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
708 709 710 711
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

H
hong 已提交
712
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0

    def accumulate(self):
        """
        Return the area (a float score) under auc curve

        Return:
            float: the area under auc curve
        """
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
747 748 749
            auc += self.trapezoid_area(
                tot_neg, tot_neg_prev, tot_pos, tot_pos_prev
            )
750 751
            idx -= 1

752 753 754
        return (
            auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
        )
755 756 757 758 759 760 761 762 763 764 765 766 767 768

    def reset(self):
        """
        Reset states and result
        """
        _num_pred_buckets = self._num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)

    def name(self):
        """
        Returns metric name
        """
        return self._name
S
Steffy-zxf 已提交
769 770 771 772 773


def accuracy(input, label, k=1, correct=None, total=None, name=None):
    """
    accuracy layer.
774 775
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall

S
Steffy-zxf 已提交
776 777 778
    This function computes the accuracy using the input and label.
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
779

S
Steffy-zxf 已提交
780 781 782
    Args:
        input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
            The shape is ``[sample_number, class_dim]`` .
783
        label(Tensor): The label of dataset. Tensor with type int64 or int32. The shape is ``[sample_number, 1]`` .
S
Steffy-zxf 已提交
784 785 786 787 788
        k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
        correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
        total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`
789

S
Steffy-zxf 已提交
790 791
    Returns:
        Tensor, the correct rate. A Tensor with type float32.
792

S
Steffy-zxf 已提交
793 794
    Examples:
        .. code-block:: python
795

S
Steffy-zxf 已提交
796
            import paddle
797

S
Steffy-zxf 已提交
798 799 800 801 802
            predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
            # [0.5]
    """
803 804
    if label.dtype == paddle.int32:
        label = paddle.cast(label, paddle.int64)
J
Jiabin Yang 已提交
805
    if _non_static_mode():
S
Steffy-zxf 已提交
806 807 808 809 810
        if correct is None:
            correct = _varbase_creator(dtype="int32")
        if total is None:
            total = _varbase_creator(dtype="int32")

811
        topk_out, topk_indices = paddle.topk(input, k=k)
812 813 814
        _acc, _, _ = _legacy_C_ops.accuracy(
            topk_out, topk_indices, label, correct, total
        )
H
hong 已提交
815

S
Steffy-zxf 已提交
816 817 818
        return _acc

    helper = LayerHelper("accuracy", **locals())
819 820 821
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'accuracy'
    )
822
    topk_out, topk_indices = paddle.topk(input, k=k)
S
Steffy-zxf 已提交
823 824 825 826 827
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
    if correct is None:
        correct = helper.create_variable_for_type_inference(dtype="int32")
    if total is None:
        total = helper.create_variable_for_type_inference(dtype="int32")
828 829 830 831 832 833 834 835 836
    helper.append_op(
        type="accuracy",
        inputs={"Out": [topk_out], "Indices": [topk_indices], "Label": [label]},
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        },
    )
S
Steffy-zxf 已提交
837
    return acc_out