metrics.py 27.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import abc
import numpy as np

S
Steffy-zxf 已提交
23 24 25 26
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.layer_helper import LayerHelper
from ..fluid.layers.nn import topk
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode
27 28
import paddle

S
Steffy-zxf 已提交
29
__all__ = ['Metric', 'Accuracy', 'Precision', 'Recall', 'Auc', 'accuracy']
30 31 32 33 34 35 36 37


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


@six.add_metaclass(abc.ABCMeta)
class Metric(object):
38
    r"""
39 40
    Base class for metric, encapsulates metric logic and APIs
    Usage:
41 42 43 44 45 46 47

        .. code-block:: text

            m = SomeMetric()
            for prediction, label in ...:
                m.update(prediction, label)
            m.accumulate()
48 49 50 51 52 53 54 55 56
        
    Advanced usage for :code:`compute`:

    Metric calculation can be accelerated by calculating metric states
    from model outputs and labels by build-in operators not by Python/NumPy
    in :code:`compute`, metric states will be fetched as NumPy array and
    call :code:`update` with states in NumPy format.
    Metric calculated as follows (operations in Model and Metric are
    indicated with curly brackets, while data nodes not):
57 58 59

        .. code-block:: text

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
                 inputs & labels              || ------------------
                       |                      ||
                    {model}                   ||
                       |                      ||
                outputs & labels              ||
                       |                      ||    tensor data
                {Metric.compute}              ||
                       |                      ||
              metric states(tensor)           ||
                       |                      ||
                {fetch as numpy}              || ------------------
                       |                      ||
              metric states(numpy)            ||    numpy data
                       |                      ||
                {Metric.update}               \/ ------------------
75

76
    Examples:
77

78 79 80 81 82 83 84 85 86 87
        For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
        as inputs, we can calculate the correct prediction matrix between
        :code:`pred` and :code:`label` in :code:`compute`.
        For examples, prediction results contains 10 classes, while :code:`pred`
        shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
        and we only need to calculate accurary of top-1 and top-5, we could
        calculate the correct prediction matrix of the top-5 scores of the
        prediction of each sample like follows, while the correct prediction
        matrix shape is [N, 5].

88 89 90 91 92 93 94 95
          .. code-block:: text

              def compute(pred, label):
                  # sort prediction and slice the top-5 scores
                  pred = paddle.argsort(pred, descending=True)[:, :5]
                  # calculate whether the predictions are correct
                  correct = pred == label
                  return paddle.cast(correct, dtype='float32')
96 97 98 99 100 101

        With the :code:`compute`, we split some calculations to OPs (which
        may run on GPU devices, will be faster), and only fetch 1 tensor with
        shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
        :code:`update` can be define as follows:

102 103 104 105 106 107 108 109 110 111 112
          .. code-block:: text

              def update(self, correct):
                  accs = []
                  for i, k in enumerate(self.topk):
                      num_corrects = correct[:, :k].sum()
                      num_samples = len(correct)
                      accs.append(float(num_corrects) / num_samples)
                      self.total[i] += num_corrects
                      self.count[i] += num_samples
                  return accs
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    """

    def __init__(self):
        pass

    @abc.abstractmethod
    def reset(self):
        """
        Reset states and result
        """
        raise NotImplementedError("function 'reset' not implemented in {}.".
                                  format(self.__class__.__name__))

    @abc.abstractmethod
    def update(self, *args):
        """
        Update states for metric

        Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
        if :code:`compute` is not defined, the inputs of :code:`update`
        will be flatten arguments of **output** of mode and **label** from data:
        :code:`update(output1, output2, ..., label1, label2,...)`

        see :code:`Metric.compute`
        """
        raise NotImplementedError("function 'update' not implemented in {}.".
                                  format(self.__class__.__name__))

    @abc.abstractmethod
    def accumulate(self):
        """
        Accumulates statistics, computes and returns the metric value
        """
        raise NotImplementedError(
            "function 'accumulate' not implemented in {}.".format(
                self.__class__.__name__))

    @abc.abstractmethod
    def name(self):
        """
        Returns metric name
        """
        raise NotImplementedError("function 'name' not implemented in {}.".
                                  format(self.__class__.__name__))

    def compute(self, *args):
        """
        This API is advanced usage to accelerate metric calculating, calulations
        from outputs of model to the states which should be updated by Metric can
        be defined here, where Paddle OPs is also supported. Outputs of this API
        will be the inputs of "Metric.update".

        If :code:`compute` is defined, it will be called with **outputs**
        of model and **labels** from data as arguments, all outputs and labels
        will be concatenated and flatten and each filed as a separate argument
        as follows:
        :code:`compute(output1, output2, ..., label1, label2,...)`

        If :code:`compute` is not defined, default behaviour is to pass
        input to output, so output format will be:
        :code:`return output1, output2, ..., label1, label2,...`

        see :code:`Metric.update`
        """
        return args


class Accuracy(Metric):
    """
    Encapsulates accuracy metric logic.

    Args:
185
        topk (int|list[int]|tuple[int]): Number of top elements to look at
186 187 188 189 190 191 192 193
            for computing accuracy. Default is (1,).
        name (str, optional): String name of the metric instance. Default
            is `acc`.

    Example by standalone:
        
        .. code-block:: python

194 195
          import numpy as np
          import paddle
196

197 198 199 200 201 202
          x = paddle.to_tensor(np.array([
              [0.1, 0.2, 0.3, 0.4],
              [0.1, 0.4, 0.3, 0.2],
              [0.1, 0.2, 0.4, 0.3],
              [0.1, 0.2, 0.3, 0.4]]))
          y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
203

204 205 206 207 208
          m = paddle.metric.Accuracy()
          correct = m.compute(x, y)
          m.update(correct)
          res = m.accumulate()
          print(res) # 0.75
209 210 211 212 213 214


    Example with Model API:
        
        .. code-block:: python

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
          import paddle
          from paddle.static import InputSpec
          import paddle.vision.transforms as T
          from paddle.vision.datasets import MNIST
             
          input = InputSpec([None, 1, 28, 28], 'float32', 'image')
          label = InputSpec([None, 1], 'int64', 'label')
          transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
          train_dataset = MNIST(mode='train', transform=transform)

          model = paddle.Model(paddle.vision.LeNet(), input, label)
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=paddle.nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())

          model.fit(train_dataset, batch_size=64)
234 235 236 237 238 239 240 241 242 243 244 245

    """

    def __init__(self, topk=(1, ), name=None, *args, **kwargs):
        super(Accuracy, self).__init__(*args, **kwargs)
        self.topk = topk
        self.maxk = max(topk)
        self._init_name(name)
        self.reset()

    def compute(self, pred, label, *args):
        """
246
        Compute the top-k (maximum value in `topk`) indices.
247 248

        Args:
249 250 251 252 253 254
            pred (Tensor): The predicted value is a Tensor with dtype
                float32 or float64. Shape is [batch_size, d0, ..., dN].
            label (Tensor): The ground truth value is Tensor with dtype
                int64. Shape is [batch_size, d0, ..., 1], or
                [batch_size, d0, ..., num_classes] in one hot representation.
                
255
        Return:
256
            Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
257
        """
258 259 260 261 262 263 264 265 266 267 268 269
        pred = paddle.argsort(pred, descending=True)
        pred = paddle.slice(
            pred, axes=[len(pred.shape) - 1], starts=[0], ends=[self.maxk])
        if (len(label.shape) == 1) or \
           (len(label.shape) == 2 and label.shape[-1] == 1):
            # In static mode, the real label data shape may be different
            # from shape defined by paddle.static.InputSpec in model
            # building, reshape to the right shape.
            label = paddle.reshape(label, (-1, 1))
        elif label.shape[-1] != 1:
            # one-hot label
            label = paddle.argmax(label, axis=-1, keepdim=True)
270 271 272 273 274 275 276 277 278 279
        correct = pred == label
        return paddle.cast(correct, dtype='float32')

    def update(self, correct, *args):
        """
        Update the metrics states (correct count and total count), in order to
        calculate cumulative accuracy of all instances. This function also
        returns the accuracy of current step.
        
        Args:
280
            correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
281 282 283 284 285 286

        Return:
            Tensor: the accuracy of current step.
        """
        if isinstance(correct, paddle.Tensor):
            correct = correct.numpy()
287
        num_samples = np.prod(np.array(correct.shape[:-1]))
288 289
        accs = []
        for i, k in enumerate(self.topk):
290
            num_corrects = correct[..., :k].sum()
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
            accs.append(float(num_corrects) / num_samples)
            self.total[i] += num_corrects
            self.count[i] += num_samples
        accs = accs[0] if len(self.topk) == 1 else accs
        return accs

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.total = [0.] * len(self.topk)
        self.count = [0] * len(self.topk)

    def accumulate(self):
        """
        Computes and returns the accumulated metric.
        """
        res = []
        for t, c in zip(self.total, self.count):
            r = float(t) / c if c > 0 else 0.
            res.append(r)
        res = res[0] if len(self.topk) == 1 else res
        return res

    def _init_name(self, name):
        name = name or 'acc'
        if self.maxk != 1:
            self._name = ['{}_top{}'.format(name, k) for k in self.topk]
        else:
            self._name = [name]

    def name(self):
        """
        Return name of metric instance.
        """
        return self._name


class Precision(Metric):
    """
    Precision (also called positive predictive value) is the fraction of
    relevant instances among the retrieved instances. Refer to
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

    Noted that this class manages the precision score only for binary
    classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `precision`.

    Example by standalone:
        
        .. code-block:: python

346 347
          import numpy as np
          import paddle
348

349 350
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([0, 1, 1, 1])
351

352 353 354 355
          m = paddle.metric.Precision()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 1.0
356 357 358 359 360 361


    Example with Model API:
        
        .. code-block:: python

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
          import numpy as np
          
          import paddle
          import paddle.nn as nn
          
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
          
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
          
              def __len__(self):
                  return self.n
379
  
380 381 382 383 384 385 386 387 388 389 390 391 392
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=paddle.metric.Precision())
          
          data = Data()
          model.fit(data, batch_size=16)
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    """

    def __init__(self, name='precision', *args, **kwargs):
        super(Precision, self).__init__(*args, **kwargs)
        self.tp = 0  # true positive
        self.fp = 0  # false positive
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds (numpy.ndarray): The prediction result, usually the output
                of two-class sigmoid function. It should be a vector (column
                vector or row vector) with data type: 'float64' or 'float32'.
            labels (numpy.ndarray): The ground truth (labels),
                the shape should keep the same as preds.
                The data type is 'int32' or 'int64'.
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        if isinstance(labels, paddle.Tensor):
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.floor(preds + 0.5).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if pred == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fp = 0

    def accumulate(self):
        """
        Calculate the final precision.

        Returns:
            A scaler float: results of the calculated precision.
        """
        ap = self.tp + self.fp
        return float(self.tp) / ap if ap != 0 else .0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Recall(Metric):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

    Refer to:
    https://en.wikipedia.org/wiki/Precision_and_recall

    Noted that this class manages the recall score only for
    binary classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `recall`.

    Example by standalone:
        
        .. code-block:: python

479 480
          import numpy as np
          import paddle
481

482 483
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([1, 0, 1, 1])
484

485 486 487 488
          m = paddle.metric.Recall()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 2.0 / 3.0
489 490 491 492 493 494


    Example with Model API:
        
        .. code-block:: python

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
          import numpy as np
          
          import paddle
          import paddle.nn as nn
          
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
          
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
          
              def __len__(self):
                  return self.n
          
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
          
          data = Data()
          model.fit(data, batch_size=16)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    """

    def __init__(self, name='recall', *args, **kwargs):
        super(Recall, self).__init__(*args, **kwargs)
        self.tp = 0  # true positive
        self.fn = 0  # false negative
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds(numpy.array): prediction results of current mini-batch,
                the output of two-class sigmoid function.
                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.array): ground truth (labels) of current mini-batch,
                the shape should keep the same as preds.
                Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        if isinstance(labels, paddle.Tensor):
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fn += 1

    def accumulate(self):
        """
        Calculate the final recall.

        Returns:
            A scaler float: results of the calculated Recall.
        """
        recall = self.tp + self.fn
        return float(self.tp) / recall if recall != 0 else .0

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fn = 0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Auc(Metric):
    """
    The auc metric is for binary classification.
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
    Please notice that the auc metric is implemented with python, which may be a little bit slow.

    The `auc` function creates four local variables, `true_positives`,
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.

    Args:
        curve (str): Specifies the mode of the curve to be computed,
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        num_thresholds (int): The number of thresholds to use when
            discretizing the roc curve. Default is 4095.
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        name (str, optional): String name of the metric instance. Default
            is `auc`.

    "NOTE: only implement the ROC curve type via Python now."

    Example by standalone:
        .. code-block:: python

620 621
          import numpy as np
          import paddle
622

623 624 625 626 627 628 629 630 631 632 633
          m = paddle.metric.Auc()
          
          n = 8
          class0_preds = np.random.random(size = (n, 1))
          class1_preds = 1 - class0_preds
          
          preds = np.concatenate((class0_preds, class1_preds), axis=1)
          labels = np.random.randint(2, size = (n, 1))
          
          m.update(preds=preds, labels=labels)
          res = m.accumulate()
634 635 636 637 638 639


    Example with Model API:
        
        .. code-block:: python

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
          import numpy as np
          import paddle
          import paddle.nn as nn
          
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
          
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
          
              def __len__(self):
                  return self.n
          
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 2), nn.Softmax())
          )
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          
          def loss(x, y):
              return nn.functional.nll_loss(paddle.log(x), y)
          
          model.prepare(
              optim,
              loss=loss,
              metrics=paddle.metric.Auc())
          data = Data()
          model.fit(data, batch_size=16)
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    """

    def __init__(self,
                 curve='ROC',
                 num_thresholds=4095,
                 name='auc',
                 *args,
                 **kwargs):
        super(Auc, self).__init__(*args, **kwargs)
        self._curve = curve
        self._num_thresholds = num_thresholds

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)
        self._name = name

    def update(self, preds, labels):
        """
        Update the auc curve with the given predictions and labels.

        Args:
            preds (numpy.array): An numpy array in the shape of
                (batch_size, 2), preds[i][j] denotes the probability of
                classifying the instance i into the class j.
            labels (numpy.array): an numpy array in the shape of
                (batch_size, 1), labels[i] is either o or 1,
                representing the label of the instance i.
        """
        if isinstance(labels, paddle.Tensor):
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0

    def accumulate(self):
        """
        Return the area (a float score) under auc curve

        Return:
            float: the area under auc curve
        """
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
            auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos,
                                       tot_pos_prev)
            idx -= 1

        return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0

    def reset(self):
        """
        Reset states and result
        """
        _num_pred_buckets = self._num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)

    def name(self):
        """
        Returns metric name
        """
        return self._name
S
Steffy-zxf 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826


def accuracy(input, label, k=1, correct=None, total=None, name=None):
    """
    accuracy layer.
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall                                                                                           
 
    This function computes the accuracy using the input and label.
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
 
    Args:
        input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
            The shape is ``[sample_number, class_dim]`` .
        label(Tensor): The label of dataset. Tensor with type int32,int64. The shape is ``[sample_number, 1]`` .
        k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
        correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
        total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`
 
    Returns:
        Tensor, the correct rate. A Tensor with type float32.
 
    Examples:
        .. code-block:: python
 
            import paddle
 
            predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
            # [0.5]
    """
    if in_dygraph_mode():
        if correct is None:
            correct = _varbase_creator(dtype="int32")
        if total is None:
            total = _varbase_creator(dtype="int32")

        topk_out, topk_indices = topk(input, k=k)
        _acc, _, _ = core.ops.accuracy(topk_out, topk_indices, label, correct,
                                       total)
        return _acc

    helper = LayerHelper("accuracy", **locals())
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'accuracy')
    topk_out, topk_indices = topk(input, k=k)
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
    if correct is None:
        correct = helper.create_variable_for_type_inference(dtype="int32")
    if total is None:
        total = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
        type="accuracy",
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
    return acc_out