metrics.py 27.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
import numpy as np

S
Steffy-zxf 已提交
18 19
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.framework import _non_static_mode, _varbase_creator
21
import paddle
22
from paddle import _legacy_C_ops
23

24
__all__ = []
25 26 27 28 29 30


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


31
class Metric(metaclass=abc.ABCMeta):
32
    r"""
33 34
    Base class for metric, encapsulates metric logic and APIs
    Usage:
35 36 37 38 39 40 41

        .. code-block:: text

            m = SomeMetric()
            for prediction, label in ...:
                m.update(prediction, label)
            m.accumulate()
42

43 44 45 46 47 48 49 50
    Advanced usage for :code:`compute`:

    Metric calculation can be accelerated by calculating metric states
    from model outputs and labels by build-in operators not by Python/NumPy
    in :code:`compute`, metric states will be fetched as NumPy array and
    call :code:`update` with states in NumPy format.
    Metric calculated as follows (operations in Model and Metric are
    indicated with curly brackets, while data nodes not):
51 52 53

        .. code-block:: text

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                 inputs & labels              || ------------------
                       |                      ||
                    {model}                   ||
                       |                      ||
                outputs & labels              ||
                       |                      ||    tensor data
                {Metric.compute}              ||
                       |                      ||
              metric states(tensor)           ||
                       |                      ||
                {fetch as numpy}              || ------------------
                       |                      ||
              metric states(numpy)            ||    numpy data
                       |                      ||
                {Metric.update}               \/ ------------------
69

70
    Examples:
71

72 73 74 75 76 77 78 79 80 81
        For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
        as inputs, we can calculate the correct prediction matrix between
        :code:`pred` and :code:`label` in :code:`compute`.
        For examples, prediction results contains 10 classes, while :code:`pred`
        shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
        and we only need to calculate accurary of top-1 and top-5, we could
        calculate the correct prediction matrix of the top-5 scores of the
        prediction of each sample like follows, while the correct prediction
        matrix shape is [N, 5].

82 83 84 85 86 87 88 89
          .. code-block:: text

              def compute(pred, label):
                  # sort prediction and slice the top-5 scores
                  pred = paddle.argsort(pred, descending=True)[:, :5]
                  # calculate whether the predictions are correct
                  correct = pred == label
                  return paddle.cast(correct, dtype='float32')
90 91 92 93 94 95

        With the :code:`compute`, we split some calculations to OPs (which
        may run on GPU devices, will be faster), and only fetch 1 tensor with
        shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
        :code:`update` can be define as follows:

96 97 98 99 100 101 102 103 104 105 106
          .. code-block:: text

              def update(self, correct):
                  accs = []
                  for i, k in enumerate(self.topk):
                      num_corrects = correct[:, :k].sum()
                      num_samples = len(correct)
                      accs.append(float(num_corrects) / num_samples)
                      self.total[i] += num_corrects
                      self.count[i] += num_samples
                  return accs
107 108 109 110 111 112 113 114 115 116
    """

    def __init__(self):
        pass

    @abc.abstractmethod
    def reset(self):
        """
        Reset states and result
        """
117 118 119
        raise NotImplementedError(
            "function 'reset' not implemented in {}.".format(
                self.__class__.__name__))
120 121 122 123 124 125 126 127 128 129 130 131 132

    @abc.abstractmethod
    def update(self, *args):
        """
        Update states for metric

        Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
        if :code:`compute` is not defined, the inputs of :code:`update`
        will be flatten arguments of **output** of mode and **label** from data:
        :code:`update(output1, output2, ..., label1, label2,...)`

        see :code:`Metric.compute`
        """
133 134 135
        raise NotImplementedError(
            "function 'update' not implemented in {}.".format(
                self.__class__.__name__))
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

    @abc.abstractmethod
    def accumulate(self):
        """
        Accumulates statistics, computes and returns the metric value
        """
        raise NotImplementedError(
            "function 'accumulate' not implemented in {}.".format(
                self.__class__.__name__))

    @abc.abstractmethod
    def name(self):
        """
        Returns metric name
        """
151 152 153
        raise NotImplementedError(
            "function 'name' not implemented in {}.".format(
                self.__class__.__name__))
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    def compute(self, *args):
        """
        This API is advanced usage to accelerate metric calculating, calulations
        from outputs of model to the states which should be updated by Metric can
        be defined here, where Paddle OPs is also supported. Outputs of this API
        will be the inputs of "Metric.update".

        If :code:`compute` is defined, it will be called with **outputs**
        of model and **labels** from data as arguments, all outputs and labels
        will be concatenated and flatten and each filed as a separate argument
        as follows:
        :code:`compute(output1, output2, ..., label1, label2,...)`

        If :code:`compute` is not defined, default behaviour is to pass
        input to output, so output format will be:
        :code:`return output1, output2, ..., label1, label2,...`

        see :code:`Metric.update`
        """
        return args


class Accuracy(Metric):
    """
    Encapsulates accuracy metric logic.

    Args:
J
Jiaqi Liu 已提交
182
        topk (list[int]|tuple[int]): Number of top elements to look at
183 184 185 186 187
            for computing accuracy. Default is (1,).
        name (str, optional): String name of the metric instance. Default
            is `acc`.

    Example by standalone:
188

189 190
        .. code-block:: python

191 192
          import numpy as np
          import paddle
193

194 195 196 197 198 199
          x = paddle.to_tensor(np.array([
              [0.1, 0.2, 0.3, 0.4],
              [0.1, 0.4, 0.3, 0.2],
              [0.1, 0.2, 0.4, 0.3],
              [0.1, 0.2, 0.3, 0.4]]))
          y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
200

201 202 203 204 205
          m = paddle.metric.Accuracy()
          correct = m.compute(x, y)
          m.update(correct)
          res = m.accumulate()
          print(res) # 0.75
206 207 208


    Example with Model API:
209

210 211
        .. code-block:: python

212 213 214 215
          import paddle
          from paddle.static import InputSpec
          import paddle.vision.transforms as T
          from paddle.vision.datasets import MNIST
216

217 218 219 220 221
          input = InputSpec([None, 1, 28, 28], 'float32', 'image')
          label = InputSpec([None, 1], 'int64', 'label')
          transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
          train_dataset = MNIST(mode='train', transform=transform)

222
          model = paddle.Model(paddle.vision.models.LeNet(), input, label)
223 224 225 226 227 228 229 230
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=paddle.nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())

          model.fit(train_dataset, batch_size=64)
231 232 233 234 235 236 237 238 239 240 241 242

    """

    def __init__(self, topk=(1, ), name=None, *args, **kwargs):
        super(Accuracy, self).__init__(*args, **kwargs)
        self.topk = topk
        self.maxk = max(topk)
        self._init_name(name)
        self.reset()

    def compute(self, pred, label, *args):
        """
243
        Compute the top-k (maximum value in `topk`) indices.
244 245

        Args:
246 247 248 249 250
            pred (Tensor): The predicted value is a Tensor with dtype
                float32 or float64. Shape is [batch_size, d0, ..., dN].
            label (Tensor): The ground truth value is Tensor with dtype
                int64. Shape is [batch_size, d0, ..., 1], or
                [batch_size, d0, ..., num_classes] in one hot representation.
251

252
        Return:
253
            Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
254
        """
255
        pred = paddle.argsort(pred, descending=True)
256 257 258 259
        pred = paddle.slice(pred,
                            axes=[len(pred.shape) - 1],
                            starts=[0],
                            ends=[self.maxk])
260 261 262 263 264 265 266 267 268
        if (len(label.shape) == 1) or \
           (len(label.shape) == 2 and label.shape[-1] == 1):
            # In static mode, the real label data shape may be different
            # from shape defined by paddle.static.InputSpec in model
            # building, reshape to the right shape.
            label = paddle.reshape(label, (-1, 1))
        elif label.shape[-1] != 1:
            # one-hot label
            label = paddle.argmax(label, axis=-1, keepdim=True)
269 270 271 272 273 274 275 276
        correct = pred == label
        return paddle.cast(correct, dtype='float32')

    def update(self, correct, *args):
        """
        Update the metrics states (correct count and total count), in order to
        calculate cumulative accuracy of all instances. This function also
        returns the accuracy of current step.
277

278
        Args:
279
            correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
280 281 282 283

        Return:
            Tensor: the accuracy of current step.
        """
H
hong 已提交
284
        if isinstance(correct, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
285
            correct = correct.numpy()
286
        num_samples = np.prod(np.array(correct.shape[:-1]))
287 288
        accs = []
        for i, k in enumerate(self.topk):
289
            num_corrects = correct[..., :k].sum()
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
            accs.append(float(num_corrects) / num_samples)
            self.total[i] += num_corrects
            self.count[i] += num_samples
        accs = accs[0] if len(self.topk) == 1 else accs
        return accs

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.total = [0.] * len(self.topk)
        self.count = [0] * len(self.topk)

    def accumulate(self):
        """
        Computes and returns the accumulated metric.
        """
        res = []
        for t, c in zip(self.total, self.count):
            r = float(t) / c if c > 0 else 0.
            res.append(r)
        res = res[0] if len(self.topk) == 1 else res
        return res

    def _init_name(self, name):
        name = name or 'acc'
        if self.maxk != 1:
            self._name = ['{}_top{}'.format(name, k) for k in self.topk]
        else:
            self._name = [name]

    def name(self):
        """
        Return name of metric instance.
        """
        return self._name


class Precision(Metric):
    """
    Precision (also called positive predictive value) is the fraction of
    relevant instances among the retrieved instances. Refer to
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

    Noted that this class manages the precision score only for binary
    classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `precision`.

    Example by standalone:
342

343 344
        .. code-block:: python

345 346
          import numpy as np
          import paddle
347

348 349
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([0, 1, 1, 1])
350

351 352 353 354
          m = paddle.metric.Precision()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 1.0
355 356 357


    Example with Model API:
358

359 360
        .. code-block:: python

361
          import numpy as np
362

363 364
          import paddle
          import paddle.nn as nn
365

366 367 368 369 370 371
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
372

373 374
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
375

376 377
              def __len__(self):
                  return self.n
378

379 380 381 382 383 384 385 386 387 388
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=paddle.metric.Precision())
389

390 391
          data = Data()
          model.fit(data, batch_size=16)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    """

    def __init__(self, name='precision', *args, **kwargs):
        super(Precision, self).__init__(*args, **kwargs)
        self.tp = 0  # true positive
        self.fp = 0  # false positive
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds (numpy.ndarray): The prediction result, usually the output
                of two-class sigmoid function. It should be a vector (column
                vector or row vector) with data type: 'float64' or 'float32'.
            labels (numpy.ndarray): The ground truth (labels),
                the shape should keep the same as preds.
                The data type is 'int32' or 'int64'.
        """
H
hong 已提交
412
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
413 414 415 416
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
417
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.floor(preds + 0.5).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if pred == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fp = 0

    def accumulate(self):
        """
        Calculate the final precision.

        Returns:
            A scaler float: results of the calculated precision.
        """
        ap = self.tp + self.fp
        return float(self.tp) / ap if ap != 0 else .0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Recall(Metric):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

    Refer to:
    https://en.wikipedia.org/wiki/Precision_and_recall

    Noted that this class manages the recall score only for
    binary classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `recall`.

    Example by standalone:
475

476 477
        .. code-block:: python

478 479
          import numpy as np
          import paddle
480

481 482
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([1, 0, 1, 1])
483

484 485 486 487
          m = paddle.metric.Recall()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 2.0 / 3.0
488 489 490


    Example with Model API:
491

492 493
        .. code-block:: python

494
          import numpy as np
495

496 497
          import paddle
          import paddle.nn as nn
498

499 500 501 502 503 504
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
505

506 507
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
508

509 510
              def __len__(self):
                  return self.n
511

512 513 514 515 516 517 518 519 520 521
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
522

523 524
          data = Data()
          model.fit(data, batch_size=16)
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    """

    def __init__(self, name='recall', *args, **kwargs):
        super(Recall, self).__init__(*args, **kwargs)
        self.tp = 0  # true positive
        self.fn = 0  # false negative
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds(numpy.array): prediction results of current mini-batch,
                the output of two-class sigmoid function.
                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.array): ground truth (labels) of current mini-batch,
                the shape should keep the same as preds.
                Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
H
hong 已提交
545
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
546 547 548 549
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
550
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fn += 1

    def accumulate(self):
        """
        Calculate the final recall.

        Returns:
            A scaler float: results of the calculated Recall.
        """
        recall = self.tp + self.fn
        return float(self.tp) / recall if recall != 0 else .0

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fn = 0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Auc(Metric):
    """
    The auc metric is for binary classification.
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
    Please notice that the auc metric is implemented with python, which may be a little bit slow.

    The `auc` function creates four local variables, `true_positives`,
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.

    Args:
        curve (str): Specifies the mode of the curve to be computed,
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        num_thresholds (int): The number of thresholds to use when
            discretizing the roc curve. Default is 4095.
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        name (str, optional): String name of the metric instance. Default
            is `auc`.

    "NOTE: only implement the ROC curve type via Python now."

    Example by standalone:
        .. code-block:: python

619 620
          import numpy as np
          import paddle
621

622
          m = paddle.metric.Auc()
623

624 625 626
          n = 8
          class0_preds = np.random.random(size = (n, 1))
          class1_preds = 1 - class0_preds
627

628 629
          preds = np.concatenate((class0_preds, class1_preds), axis=1)
          labels = np.random.randint(2, size = (n, 1))
630

631 632
          m.update(preds=preds, labels=labels)
          res = m.accumulate()
633 634 635


    Example with Model API:
636

637 638
        .. code-block:: python

639 640 641
          import numpy as np
          import paddle
          import paddle.nn as nn
642

643 644 645 646 647 648
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
649

650 651
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
652

653 654
              def __len__(self):
                  return self.n
655

656 657 658 659 660
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 2), nn.Softmax())
          )
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
661

662 663
          def loss(x, y):
              return nn.functional.nll_loss(paddle.log(x), y)
664

665 666 667 668 669 670
          model.prepare(
              optim,
              loss=loss,
              metrics=paddle.metric.Auc())
          data = Data()
          model.fit(data, batch_size=16)
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    """

    def __init__(self,
                 curve='ROC',
                 num_thresholds=4095,
                 name='auc',
                 *args,
                 **kwargs):
        super(Auc, self).__init__(*args, **kwargs)
        self._curve = curve
        self._num_thresholds = num_thresholds

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)
        self._name = name

    def update(self, preds, labels):
        """
        Update the auc curve with the given predictions and labels.

        Args:
            preds (numpy.array): An numpy array in the shape of
                (batch_size, 2), preds[i][j] denotes the probability of
                classifying the instance i into the class j.
            labels (numpy.array): an numpy array in the shape of
                (batch_size, 1), labels[i] is either o or 1,
                representing the label of the instance i.
        """
H
hong 已提交
700
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
701 702 703 704
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

H
hong 已提交
705
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0

    def accumulate(self):
        """
        Return the area (a float score) under auc curve

        Return:
            float: the area under auc curve
        """
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
            auc += self.trapezoid_area(tot_neg, tot_neg_prev, tot_pos,
                                       tot_pos_prev)
            idx -= 1

        return auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0

    def reset(self):
        """
        Reset states and result
        """
        _num_pred_buckets = self._num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)

    def name(self):
        """
        Returns metric name
        """
        return self._name
S
Steffy-zxf 已提交
759 760 761 762 763


def accuracy(input, label, k=1, correct=None, total=None, name=None):
    """
    accuracy layer.
764 765
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall

S
Steffy-zxf 已提交
766 767 768
    This function computes the accuracy using the input and label.
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
769

S
Steffy-zxf 已提交
770 771 772
    Args:
        input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
            The shape is ``[sample_number, class_dim]`` .
773
        label(Tensor): The label of dataset. Tensor with type int64 or int32. The shape is ``[sample_number, 1]`` .
S
Steffy-zxf 已提交
774 775 776 777 778
        k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
        correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
        total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`
779

S
Steffy-zxf 已提交
780 781
    Returns:
        Tensor, the correct rate. A Tensor with type float32.
782

S
Steffy-zxf 已提交
783 784
    Examples:
        .. code-block:: python
785

S
Steffy-zxf 已提交
786
            import paddle
787

S
Steffy-zxf 已提交
788 789 790 791 792
            predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
            # [0.5]
    """
793 794
    if label.dtype == paddle.int32:
        label = paddle.cast(label, paddle.int64)
J
Jiabin Yang 已提交
795
    if _non_static_mode():
S
Steffy-zxf 已提交
796 797 798 799 800
        if correct is None:
            correct = _varbase_creator(dtype="int32")
        if total is None:
            total = _varbase_creator(dtype="int32")

801
        topk_out, topk_indices = paddle.topk(input, k=k)
802 803
        _acc, _, _ = _legacy_C_ops.accuracy(topk_out, topk_indices, label,
                                            correct, total)
H
hong 已提交
804

S
Steffy-zxf 已提交
805 806 807 808 809
        return _acc

    helper = LayerHelper("accuracy", **locals())
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'accuracy')
810
    topk_out, topk_indices = paddle.topk(input, k=k)
S
Steffy-zxf 已提交
811 812 813 814 815
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
    if correct is None:
        correct = helper.create_variable_for_type_inference(dtype="int32")
    if total is None:
        total = helper.create_variable_for_type_inference(dtype="int32")
816 817 818 819 820 821 822 823 824 825 826
    helper.append_op(type="accuracy",
                     inputs={
                         "Out": [topk_out],
                         "Indices": [topk_indices],
                         "Label": [label]
                     },
                     outputs={
                         "Accuracy": [acc_out],
                         "Correct": [correct],
                         "Total": [total],
                     })
S
Steffy-zxf 已提交
827
    return acc_out