softmax_mkldnn_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

25 26 27 28 29 30
using dnnl::memory;  // Note: paddle has also "memory" namespace
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::softmax_backward;
using dnnl::softmax_forward;
using dnnl::stream;
J
Jacek Czaja 已提交
31 32
using platform::to_void_cast;

33
template <typename T>
34
class SoftmaxMKLDNNHandler
J
Jacek Czaja 已提交
35
    : public platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward,
36
                                      mkldnn::softmax_backward> {
J
Jacek Czaja 已提交
37
 public:
J
Jacek Czaja 已提交
38
  SoftmaxMKLDNNHandler(const mkldnn::engine mkldnn_engine,
39
                       platform::Place cpu_place, const Tensor* input,
J
Jacek Czaja 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52
                       Tensor* output, const int axis)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward, mkldnn::softmax_backward>(
            mkldnn_engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        platform::errors::InvalidArgument(
            "The shape of input and output tensor must be identical."));

    auto softmax_tz = framework::vectorize(input->dims());
    auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(),
                           input->format());

    this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md, axis);
53
  }
J
Jacek Czaja 已提交
54

55
  SoftmaxMKLDNNHandler(const framework::ExecutionContext& ctx,
J
Jacek Czaja 已提交
56
                       const mkldnn::engine mkldnn_engine,
57 58 59
                       platform::Place cpu_place, const Tensor* out,
                       const Tensor* out_grad, Tensor* in_x_grad,
                       const std::string& unique_name)
60 61
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(mkldnn_engine, cpu_place) {
62 63 64 65 66 67 68 69 70 71 72 73 74 75
      PADDLE_ENFORCE_EQ(
          out_grad->dims(), in_x_grad->dims(),
          platform::errors::InvalidArgument("The shape of softmax_grad's input "
                                            "and output must be identical."));

      auto dims = out_grad->dims();  // input and output share the same shape
      const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
      auto softmax_tz = framework::vectorize<int64_t>(dims);

      auto data_softmax_md = MKLDNNMemDesc(
          softmax_tz, platform::MKLDNNGetDataType<T>(), out->format());
      auto diff_softmax_md = MKLDNNMemDesc(
          softmax_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());

76 77 78 79
      this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring,
                                              data_softmax_md, axis);
      this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
                                               axis);
80
  }
J
Jacek Czaja 已提交
81
};
82 83 84 85 86 87

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
88 89
    const auto& mkldnn_engine = dev_ctx.GetEngine();

90 91
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
92
    bool is_inplaced = input->IsSharedBufferWith(*output);
F
fengjiayi 已提交
93

94
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size());
95

J
Jacek Czaja 已提交
96
    SoftmaxMKLDNNHandler<T> handler(mkldnn_engine, ctx.GetPlace(), input, output, axis);
97

98
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
99
    // For Inplace src and and dst are the same memory object
100 101
    auto softmax_dst_memory_p =
        is_inplaced ? softmax_src_memory_p : handler.AcquireDstMemory(output);
102

103 104
    auto softmax_p = handler.AcquireForwardPrimitive();

105
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
106 107
    softmax_p->execute(astream, {{DNNL_ARG_SRC, *softmax_src_memory_p},
                                 {DNNL_ARG_DST, *softmax_dst_memory_p}});
A
Adam 已提交
108
    astream.wait();
J
Jacek Czaja 已提交
109 110 111

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
112
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
113
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
114 115
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
116
    }
117 118 119 120

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
121 122 123
  }
};

J
Jacek Czaja 已提交
124 125 126 127
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
128 129 130
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL SoftmaxGrad must use CPUPlace"));
J
Jacek Czaja 已提交
131
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
J
Jacek Czaja 已提交
132
    const auto& mkldnn_engine = dev_ctx.GetEngine();
J
Jacek Czaja 已提交
133
    const Tensor* output = ctx.Input<Tensor>("Out");
134 135
    auto* out_grad = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* in_x_grad = ctx.template Output<Tensor>(framework::GradVarName("X"));
F
fengjiayi 已提交
136

J
Jacek Czaja 已提交
137
    SoftmaxMKLDNNHandler<T> handler(ctx, mkldnn_engine, ctx.GetPlace(), output,
138
                                    out_grad, in_x_grad, ctx.InputName("Out"));
139

140
    auto dst_memory_p = handler.AcquireDstMemory(output);
141 142
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(in_x_grad);
J
Jacek Czaja 已提交
143

A
Adam 已提交
144
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
145

146
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
147 148 149 150 151
    softmax_bwd_p->execute(astream,
                           {{MKLDNN_ARG_DST, *dst_memory_p},
                            {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                            {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
    astream.wait();
152

153 154
    in_x_grad->set_layout(framework::DataLayout::kMKLDNN);
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
J
Jacek Czaja 已提交
155 156
  }
};
157 158 159 160 161 162
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
163 164
                   ops::SoftmaxMKLDNNKernel<float>,
                   ops::SoftmaxMKLDNNKernel<paddle::platform::bfloat16>);
J
Jacek Czaja 已提交
165 166
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);