softmax_mkldnn_op.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

25 26 27 28 29 30
using dnnl::memory;  // Note: paddle has also "memory" namespace
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::softmax_backward;
using dnnl::softmax_forward;
using dnnl::stream;
J
Jacek Czaja 已提交
31 32
using platform::to_void_cast;

33
template <typename T>
34
class SoftmaxMKLDNNHandler
J
Jacek Czaja 已提交
35
    : public platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward,
36
                                      mkldnn::softmax_backward> {
J
Jacek Czaja 已提交
37
 public:
J
Jacek Czaja 已提交
38
  SoftmaxMKLDNNHandler(const mkldnn::engine mkldnn_engine,
39
                       platform::Place cpu_place, const Tensor* input,
J
Jacek Czaja 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52
                       Tensor* output, const int axis)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::softmax_forward, mkldnn::softmax_backward>(
            mkldnn_engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        platform::errors::InvalidArgument(
            "The shape of input and output tensor must be identical."));

    auto softmax_tz = framework::vectorize(input->dims());
    auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(),
                           input->format());

    this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md, axis);
53
  }
J
Jacek Czaja 已提交
54

55
  SoftmaxMKLDNNHandler(const framework::ExecutionContext& ctx,
J
Jacek Czaja 已提交
56
                       const mkldnn::engine mkldnn_engine,
57 58 59
                       platform::Place cpu_place, const Tensor* out,
                       const Tensor* out_grad, Tensor* in_x_grad,
                       const std::string& unique_name)
60 61
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
J
Jacek Czaja 已提交
62
            dev_ctx, mkldnn_engine, cpu_place) {
63 64 65 66 67 68 69 70 71 72 73 74 75 76
      PADDLE_ENFORCE_EQ(
          out_grad->dims(), in_x_grad->dims(),
          platform::errors::InvalidArgument("The shape of softmax_grad's input "
                                            "and output must be identical."));

      auto dims = out_grad->dims();  // input and output share the same shape
      const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
      auto softmax_tz = framework::vectorize<int64_t>(dims);

      auto data_softmax_md = MKLDNNMemDesc(
          softmax_tz, platform::MKLDNNGetDataType<T>(), out->format());
      auto diff_softmax_md = MKLDNNMemDesc(
          softmax_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());

77 78 79 80
      this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring,
                                              data_softmax_md, axis);
      this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
                                               axis);
81
  }
J
Jacek Czaja 已提交
82
};
83 84 85 86 87 88

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
89 90
    const auto& mkldnn_engine = dev_ctx.GetEngine();

91 92
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
93
    bool is_inplaced = input->IsSharedBufferWith(*output);
F
fengjiayi 已提交
94

95
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size());
96

J
Jacek Czaja 已提交
97
    SoftmaxMKLDNNHandler<T> handler(mkldnn_engine, ctx.GetPlace(), input, output, axis);
98

99
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
100
    // For Inplace src and and dst are the same memory object
101 102
    auto softmax_dst_memory_p =
        is_inplaced ? softmax_src_memory_p : handler.AcquireDstMemory(output);
103

104 105
    auto softmax_p = handler.AcquireForwardPrimitive();

106
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
107 108
    softmax_p->execute(astream, {{DNNL_ARG_SRC, *softmax_src_memory_p},
                                 {DNNL_ARG_DST, *softmax_dst_memory_p}});
A
Adam 已提交
109
    astream.wait();
J
Jacek Czaja 已提交
110 111 112

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
113
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
114
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
115 116
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
117
    }
118 119 120 121

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
122 123 124
  }
};

J
Jacek Czaja 已提交
125 126 127 128
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
129 130 131
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL SoftmaxGrad must use CPUPlace"));
J
Jacek Czaja 已提交
132
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
J
Jacek Czaja 已提交
133
    const auto& mkldnn_engine = dev_ctx.GetEngine();
J
Jacek Czaja 已提交
134
    const Tensor* output = ctx.Input<Tensor>("Out");
135 136
    auto* out_grad = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* in_x_grad = ctx.template Output<Tensor>(framework::GradVarName("X"));
F
fengjiayi 已提交
137

J
Jacek Czaja 已提交
138
    SoftmaxMKLDNNHandler<T> handler(ctx, mkldnn_engine, ctx.GetPlace(), output,
139
                                    out_grad, in_x_grad, ctx.InputName("Out"));
140

141
    auto dst_memory_p = handler.AcquireDstMemory(output);
142 143
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(in_x_grad);
J
Jacek Czaja 已提交
144

A
Adam 已提交
145
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
146

147
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
148 149 150 151 152
    softmax_bwd_p->execute(astream,
                           {{MKLDNN_ARG_DST, *dst_memory_p},
                            {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                            {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
    astream.wait();
153

154 155
    in_x_grad->set_layout(framework::DataLayout::kMKLDNN);
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
J
Jacek Czaja 已提交
156 157
  }
};
158 159 160 161 162 163
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
164 165
                   ops::SoftmaxMKLDNNKernel<float>,
                   ops::SoftmaxMKLDNNKernel<paddle::platform::bfloat16>);
J
Jacek Czaja 已提交
166 167
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);