mul_op.cc 12.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
35 36 37 38 39 40 41
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MulOp should not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
42

Q
Qiao Longfei 已提交
43 44
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
45

M
minqiyang 已提交
46 47 48
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
49

50 51 52 53 54 55
    PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
                      "Maybe the Input variable Y(%s) has not "
                      "been initialized. You may need to confirm "
                      "if you put exe.run(startup_program) "
                      "after optimizer.minimize function.",
                      ctx->Inputs("Y").front());
56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_GT(x_dims.size(), x_num_col_dims,
                      "ShapeError: The input tensor X's dimensions of MulOp "
                      "should be larger than x_num_col_dims. But received X's "
                      "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
                      x_dims.size(), x_dims, x_num_col_dims);
    PADDLE_ENFORCE_GT(y_dims.size(), y_num_col_dims,
                      "ShapeError: The input tensor Y's dimensions of MulOp "
                      "should be larger than y_num_col_dims. But received Y's "
                      "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
                      y_dims.size(), y_dims, y_num_col_dims);
66

F
fengjiayi 已提交
67 68
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
69

70 71 72 73 74 75 76
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
        "ShapeError: After flatten the input tensor X and Y to 2-D dimensions "
        "matrix X1 and Y1, the matrix X1's width must be equal with matrix "
        "Y1's height. But received X's shape = [%s], X1's shape = [%s], X1's "
        "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = %s.",
        x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, y_mat_dims[0]);
Y
Yu Yang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
90
    ctx->ShareLoD("X", /*->*/ "Out");
91
  }
P
Physher 已提交
92 93 94 95 96 97 98

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
99
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
100 101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

106 107
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
108 109 110 111 112 113 114 115
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
116 117
};

D
dongzhihong 已提交
118
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
119
 public:
Y
Yu Yang 已提交
120
  void Make() override {
C
caoying03 已提交
121 122 123
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
124 125 126
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
127
    AddAttr<int>(
F
fengjiayi 已提交
128
        "x_num_col_dims",
C
caoying03 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
144
        )DOC")
F
WIP  
fengjiayi 已提交
145
        .SetDefault(1)
F
fengjiayi 已提交
146
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
147
    AddAttr<int>(
F
fengjiayi 已提交
148
        "y_num_col_dims",
C
caoying03 已提交
149 150 151 152
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
153
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
154
        )DOC")
F
WIP  
fengjiayi 已提交
155
        .SetDefault(1)
F
fengjiayi 已提交
156
        .EqualGreaterThan(1);
157 158 159 160 161
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
162
        .SetDefault(1.0f);
163 164 165 166 167
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
168 169 170 171 172 173 174 175 176 177
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
178
    AddComment(R"DOC(
C
caoying03 已提交
179
Mul Operator.
K
kexinzhao 已提交
180

C
caoying03 已提交
181
This operator is used to perform matrix multiplication for input $X$ and $Y$.
182

183 184
The equation is:

C
caoying03 已提交
185
$$Out = X * Y$$
186

C
caoying03 已提交
187 188
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
189

190 191 192 193
)DOC");
  }
};

C
chengduo 已提交
194 195 196 197 198 199 200 201
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

202
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
203 204 205
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

206
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
207 208 209 210 211 212
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
213

Q
Qiao Longfei 已提交
214 215 216 217 218 219 220 221 222
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
223 224 225
  }
};

S
sneaxiy 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return retv;
  }
};

244 245 246 247 248 249 250 251 252
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

L
lvmengsi 已提交
253 254
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
255 256 257
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
258 259
      ctx->ShareDim("X", "DX");
    }
260
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      ctx->ShareDim("Y", "DY");
    }
  }
};

class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad_grad");

    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput("DOut", Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

281 282 283 284
    auto ddx = OutputGrad(framework::GradVarName("X"));
    auto ddw = OutputGrad(framework::GradVarName("Y"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
285 286 287
    if (!ddx.empty() || !ddw.empty()) {
      retv->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    }
288 289
    retv->SetOutput("DX", ddw.empty() ? empty_str : InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? empty_str : InputGrad("Y"));
290 291 292 293 294 295

    retv->SetAttrMap(Attrs());
    return retv;
  }
};

296 297 298
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
299
namespace ops = paddle::operators;
C
chengduo 已提交
300 301
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
                  ops::MulOpGradMaker);
P
Physher 已提交
302

303
REGISTER_OPERATOR(mul_grad, ops::MulGradOp, ops::MulDoubleGradMaker);
P
Physher 已提交
304

305
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
306

Q
QI JUN 已提交
307
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
308 309
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
310

Q
QI JUN 已提交
311
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
312 313
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
314

315 316 317 318
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);