nets.py 24.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
M
minqiyang 已提交
16
import six
17
from . import layers
F
fengjiayi 已提交
18

19 20 21
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
22
    "glu",
23
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
24
    "img_conv_group",
25
]
D
dzhwinter 已提交
26

F
fengjiayi 已提交
27 28 29

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
30
                         filter_size,
F
fengjiayi 已提交
31 32
                         pool_size,
                         pool_stride,
C
chengduoZH 已提交
33
                         pool_padding=0,
C
chengduoZH 已提交
34
                         pool_type='max',
C
chengduoZH 已提交
35 36 37 38 39 40 41 42
                         global_pooling=False,
                         conv_stride=1,
                         conv_padding=0,
                         conv_dilation=1,
                         conv_groups=1,
                         param_attr=None,
                         bias_attr=None,
                         act=None,
X
Xin Pan 已提交
43
                         use_cudnn=True):
C
chengduoZH 已提交
44
    """
45
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
46 47

    Args:
48 49
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
50 51 52
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
53
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
54 55
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
56
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
57 58
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
59
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
60 61
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
62
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
63 64 65
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
66
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
67 68
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
69
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
70 71
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
72
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
73 74
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
75
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
76 77 78
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
93 94 95 96
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
97 98 99 100
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
101 102 103 104

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
105
            import paddle.fluid as fluid
106
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
107 108 109 110 111 112 113
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
F
fengjiayi 已提交
114 115 116 117
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
C
chengduoZH 已提交
118 119 120 121
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
F
fengjiayi 已提交
122
        param_attr=param_attr,
C
chengduoZH 已提交
123
        bias_attr=bias_attr,
C
chengduoZH 已提交
124
        act=act,
X
Xin Pan 已提交
125
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
126 127 128 129

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
130
        pool_type=pool_type,
C
chengduoZH 已提交
131
        pool_stride=pool_stride,
C
chengduoZH 已提交
132 133
        pool_padding=pool_padding,
        global_pooling=global_pooling,
X
Xin Pan 已提交
134
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
135 136 137 138 139 140 141 142 143
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
144
                   param_attr=None,
Q
Qiao Longfei 已提交
145
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
146
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
147
                   pool_stride=1,
C
chengduoZH 已提交
148
                   pool_type="max",
X
Xin Pan 已提交
149
                   use_cudnn=True):
Q
Qiao Longfei 已提交
150
    """
C
chengduoZH 已提交
151 152 153 154 155 156
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
    and Pool2d. According to the input arguments, img_conv_group will do serials of
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
    result to Pool2d.

    Args:
L
lvmengsi 已提交
157
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
158 159
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
        pool_size (int|list|tuple): The pooling size of Pool2d Layer. If pool_size
L
lvmengsi 已提交
160 161
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
chengduoZH 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        conv_padding (int|list|tuple): The padding size of the Conv2d Layer. If padding is
            a list or tuple, its length must be equal to the length of conv_num_filter.
            Otherwise the conv_padding of all Conv2d Layers are the same. Default 1.
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
            Otherwise the conv_filter_size of all Conv2d Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2d Layer that is not followed by BatchNorm.
            Default: None.
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2d Layer.
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
            Conv2d Layer follows a BatchNorm. Default False.
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
        pool_stride (int|list|tuple): The pooling stride of Pool2d layer. If pool_stride
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
189 190
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
        BatchNorm, DropOut, and Pool2d, whose data type is the same with input.
C
chengduoZH 已提交
191 192 193 194

    Examples:
        .. code-block:: python

195
            import paddle.fluid as fluid
196
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
197 198 199 200 201 202 203
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
204 205 206
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
207
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
208 209 210 211 212

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
213
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
214 215 216 217
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
218
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
219 220 221
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

M
minqiyang 已提交
222
    for i in six.moves.range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
223 224 225 226 227 228 229 230 231
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
232
            param_attr=param_attr[i],
C
chengduoZH 已提交
233
            act=local_conv_act,
X
Xin Pan 已提交
234
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
235 236

        if conv_with_batchnorm[i]:
237
            tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True)
Q
Qiao Longfei 已提交
238 239
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
240
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
241 242 243 244 245

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
246
        pool_stride=pool_stride,
X
Xin Pan 已提交
247
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
248
    return pool_out
D
dzhwinter 已提交
249 250 251 252 253


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
254
                       param_attr=None,
255
                       act="sigmoid",
256 257
                       pool_type="max",
                       bias_attr=None):
C
chengduoZH 已提交
258
    """
259 260 261 262 263
    **This api takes input as an LoDTensor. If input is a Tensor, please use** 
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv` 
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
264 265

    Args:
266 267 268
        input (Variable): 2-D LoDTensor, the input of sequence_conv, 
            which supports variable-time length input sequence. 
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
269
            (T, N), where T is the total time steps in this mini-batch and N is
270
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
271 272
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
273 274 275
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
        act (str|None): Activation type for Sequence_conv Layer. 
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
276 277 278
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
279 280 281 282 283
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
284

285 286 287 288 289 290
    Returns:
        The final result after sequence_conv and sequence_pool. 
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
291 292 293 294

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
295 296
            import paddle.fluid as fluid
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
297 298
            emb_dim = 128
            hid_dim = 512
299
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
300 301 302 303 304 305 306
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
D
dzhwinter 已提交
307 308 309 310
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
311
        param_attr=param_attr,
312
        bias_attr=bias_attr,
313
        act=act)
D
dzhwinter 已提交
314

315
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
316
    return pool_out
G
guosheng 已提交
317 318 319 320


def glu(input, dim=-1):
    """
Y
Yibing Liu 已提交
321 322 323
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` , 
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` . 
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
324
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
325
    following:
G
guosheng 已提交
326 327 328 329 330

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
331
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
332
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
333

G
guosheng 已提交
334
    Args:
Y
Yibing Liu 已提交
335 336 337 338
        input (Variable): The input variable which is a Tensor or LoDTensor. 
                          The supported data types include float32, float64 
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
339
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
340 341

    Returns:
Y
Yibing Liu 已提交
342
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
343 344 345 346

    Examples:
        .. code-block:: python

347
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
348
            data = fluid.data(
Y
Yibing Liu 已提交
349 350 351
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
352 353 354
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
355 356
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
357
    return out
358 359


Y
ying 已提交
360 361 362
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
363
                                 num_heads=1,
Y
ying 已提交
364
                                 dropout_rate=0.):
365
    """
366
    This interface Multi-Head Attention using scaled dot product.
367
    Attention mechanism can be seen as mapping a query and a set of key-value
368 369 370
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
371

372
    .. math::
373

374 375 376
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
377

378
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
379

380 381 382 383 384 385
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
386

Y
ying 已提交
387
    Args:
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        num_heads (int, optional): Indicate the number of head. If the numher
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
404 405

    Returns:
406 407 408 409 410
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
411

Y
ying 已提交
412
    Raises:
413 414 415 416 417
        ValueError: Inputs quries, keys and values should all be 3-D tensors.
        ValueError: The hidden size of queries and keys should be the same.
        ValueError: The max sequence length in query batch and in key batch should be the same.
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
418

419 420 421
    Examples:
        .. code-block:: python

422 423
            import paddle.fluid as fluid

424 425 426
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
427
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
428
            contexts.shape  # [3, 5, 10]
429
    """
Y
ying 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
            "Inputs quries, keys and values should all be 3-D tensors.")

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
            "The hidden size of queries and keys should be the same.")
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
            "The max sequence length in query batch and in key batch "
            "should be the same.")
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
450
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
467 468 469 470 471 472 473 474
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
475 476 477 478 479 480
    def __split_heads(x, num_heads):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions.

        Args:
Y
ying 已提交
481 482
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
483 484

        Returns:
Y
ying 已提交
485 486
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
487
        """
Y
ying 已提交
488 489
        if num_heads == 1:
            return x
490

Y
ying 已提交
491
        hidden_size = x.shape[-1]
492 493 494
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
495
        reshaped = layers.reshape(
496 497
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
498 499

        # permuate the dimensions into:
500 501 502 503
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516
        """
        Reshape the last two dimensions of inpunt tensor x so that it becomes
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

Y
ying 已提交
517
        if len(x.shape) == 3: return x
518 519 520
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
521
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
522
        return layers.reshape(
523
            x=trans_x,
524 525 526 527 528
            shape=list(
                map(int, [
                    trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
                    trans_x.shape[3]
                ])))
529

Y
ying 已提交
530 531 532 533 534
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
535 536

    key_dim_per_head = keys.shape[-1] // num_heads
537
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
538
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
539

Y
ying 已提交
540
    weights = layers.reshape(
541
        x=layers.reshape(
Y
ying 已提交
542
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
543
        shape=product.shape)
Y
ying 已提交
544
    if dropout_rate:
G
guosheng 已提交
545 546
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False)
Y
ying 已提交
547 548
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)