Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
de99dee1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
de99dee1
编写于
10月 10, 2019
作者:
S
SunGaofeng
提交者:
GitHub
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix document of 11 APIs, and cherry-pick (#20278) into v1.6 (#20423)
test=release/1.6, test=document_fix
上级
3bbfaa89
变更
9
展开全部
隐藏空白更改
内联
并排
Showing
9 changed file
with
263 addition
and
178 deletion
+263
-178
paddle/fluid/API.spec
paddle/fluid/API.spec
+11
-11
paddle/fluid/operators/clip_op.cc
paddle/fluid/operators/clip_op.cc
+15
-12
paddle/fluid/operators/clip_op.cu
paddle/fluid/operators/clip_op.cu
+4
-2
paddle/fluid/operators/crop_op.cc
paddle/fluid/operators/crop_op.cc
+4
-2
paddle/fluid/operators/crop_op.cu
paddle/fluid/operators/crop_op.cu
+4
-2
paddle/fluid/operators/psroi_pool_op.cc
paddle/fluid/operators/psroi_pool_op.cc
+7
-6
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+27
-16
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+160
-108
python/paddle/fluid/nets.py
python/paddle/fluid/nets.py
+31
-19
未找到文件。
paddle/fluid/API.spec
浏览文件 @
de99dee1
...
...
@@ -167,7 +167,7 @@ paddle.fluid.layers.sequence_last_step (ArgSpec(args=['input'], varargs=None, ke
paddle.fluid.layers.sequence_slice (ArgSpec(args=['input', 'offset', 'length', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '39fbc5437be389f6c0c769f82fc1fba2'))
paddle.fluid.layers.dropout (ArgSpec(args=['x', 'dropout_prob', 'is_test', 'seed', 'name', 'dropout_implementation'], varargs=None, keywords=None, defaults=(False, None, None, 'downgrade_in_infer')), ('document', '392dd4bad607fd853f71fec71801044f'))
paddle.fluid.layers.split (ArgSpec(args=['input', 'num_or_sections', 'dim', 'name'], varargs=None, keywords=None, defaults=(-1, None)), ('document', '78cf3a7323d1a7697658242e13f63759'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_length', 'padding_value', 'name'], varargs=None, keywords=None, defaults=(None, 0, None)), ('document', '
9abb7bb8d267e017620a39a146dc47ea
'))
paddle.fluid.layers.ctc_greedy_decoder (ArgSpec(args=['input', 'blank', 'input_length', 'padding_value', 'name'], varargs=None, keywords=None, defaults=(None, 0, None)), ('document', '
31e0cbec2898efae95853034adadfe2b
'))
paddle.fluid.layers.edit_distance (ArgSpec(args=['input', 'label', 'normalized', 'ignored_tokens', 'input_length', 'label_length'], varargs=None, keywords=None, defaults=(True, None, None, None)), ('document', '77cbfb28cd2fc589f589c7013c5086cd'))
paddle.fluid.layers.l2_normalize (ArgSpec(args=['x', 'axis', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(1e-12, None)), ('document', 'c1df110ea65998984f564c5c10abc54a'))
paddle.fluid.layers.matmul (ArgSpec(args=['x', 'y', 'transpose_x', 'transpose_y', 'alpha', 'name'], varargs=None, keywords=None, defaults=(False, False, 1.0, None)), ('document', '3720b4a386585094435993deb028b592'))
...
...
@@ -195,12 +195,12 @@ paddle.fluid.layers.unsqueeze (ArgSpec(args=['input', 'axes', 'name'], varargs=N
paddle.fluid.layers.lod_reset (ArgSpec(args=['x', 'y', 'target_lod'], varargs=None, keywords=None, defaults=(None, None)), ('document', '74498d37dd622ac472cb36887fce09ea'))
paddle.fluid.layers.lod_append (ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=None), ('document', '37663c7c179e920838a250ea0e28d909'))
paddle.fluid.layers.lrn (ArgSpec(args=['input', 'n', 'k', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(5, 1.0, 0.0001, 0.75, None)), ('document', 'fa565b65fb98d3ca82361c79f41b06b2'))
paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '
36b6e58678956585e5b30aa3de123a60
'))
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '
95aa1972983f30fe9b5a3713e523e20f
'))
paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '
46b3ada86dd2c79042dca90a55e08f66
'))
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', '
89aa122a50dc20ee116ae49d66854d20
'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '214f1dfbe95a628600bbe99e836319cf'))
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', '6fc9bae94518bbf3e1a9e479f38f6537'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '3885fd76e122ac0563fa8369bcab7363'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'
], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '7e8e4bf1f0f8612961ed113e8af8f0c5
'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'
, 'name'], varargs=None, keywords=None, defaults=(1e-05, None)), ('document', '08d94daffbea3935178810bdc1633f07
'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1, 'NCHW')), ('document', 'd29d829607b5ff12924197a3ba296c89'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', 'bd97ebfe4bdf5110a5fcb8ecb626a447'))
paddle.fluid.layers.resize_bilinear (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode', 'data_format'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1, 'NCHW')), ('document', '44da7890c8a362a83a1c0902a1dc1e4d'))
...
...
@@ -217,7 +217,7 @@ paddle.fluid.layers.mean_iou (ArgSpec(args=['input', 'label', 'num_classes'], va
paddle.fluid.layers.relu (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0942c174f4f6fb274976d4357356f6a2'))
paddle.fluid.layers.selu (ArgSpec(args=['x', 'scale', 'alpha', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'f93c61f5b0bf933cd425a64dca2c4fdd'))
paddle.fluid.layers.log (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '02f668664e3bfc4df6c00d7363467140'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '
ba3621917d5beffd3d022b88fbf6dc46
'))
paddle.fluid.layers.crop (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '
32196a194f757b4da114a595a5bc6414
'))
paddle.fluid.layers.crop_tensor (ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'd460aaf35afbbeb9beea4789aa6e4343'))
paddle.fluid.layers.rank_loss (ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8eb36596bb43d7a907d3397c7aedbdb3'))
paddle.fluid.layers.margin_rank_loss (ArgSpec(args=['label', 'left', 'right', 'margin', 'name'], varargs=None, keywords=None, defaults=(0.1, None)), ('document', '6fc86ed23b420c8a0f6c043563cf3937'))
...
...
@@ -265,7 +265,7 @@ paddle.fluid.layers.logical_and (ArgSpec(args=['x', 'y', 'out', 'name'], varargs
paddle.fluid.layers.logical_or (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '15adbc561618b7db69671e02009bea67'))
paddle.fluid.layers.logical_xor (ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '77ccf37b710c507dd97e03f08ce8bb29'))
paddle.fluid.layers.logical_not (ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6e2fe8a322ec69811f6507d22acf8f9f'))
paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
0ce33756573c572da67302499455dbc
d'))
paddle.fluid.layers.clip (ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
4ad0d96a149f023cb72199ded4ce6e9
d'))
paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a5f4917fda557ceb834168cdbec6d51b'))
paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '597257fb94d0597c404a6a5c91ab5258'))
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', '784b7e36cea88493f9e37a41b10fbf4d'))
...
...
@@ -287,7 +287,7 @@ paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len',
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '276a1213dd431228cefa33c3146df34a'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', 'd5945431cdcae3cda21914db5bbf383e'))
paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None)), ('document', '8404e472ac12b4a30a505d3d3a3e5fdb'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
42d5155374f69786300d90d751956998
'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
9bf0cc6b0717010b8ceec5dc2541d566
'))
paddle.fluid.layers.prroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(1.0, 1, 1, None)), ('document', '454c7ea8c73313dd41513929d7526303'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', 'b0e07aa41caae04b07a8e8217cc96020'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '9d93ee81f7a3e526d68bb280bc695d6c'))
...
...
@@ -299,7 +299,7 @@ paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_c
paddle.fluid.layers.where (ArgSpec(args=['condition'], varargs=None, keywords=None, defaults=None), ('document', '68810eedf448f2cb3abd46518dd46c39'))
paddle.fluid.layers.sign (ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None), ('document', '9f19288d9a8dabcfd0bbb4fc032fa521'))
paddle.fluid.layers.deformable_conv (ArgSpec(args=['input', 'offset', 'mask', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'deformable_groups', 'im2col_step', 'param_attr', 'bias_attr', 'modulated', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, None, None, True, None)), ('document', '3e090f9e90b9c24d07348243bf137b56'))
paddle.fluid.layers.unfold (ArgSpec(args=['x', 'kernel_sizes', 'strides', 'paddings', 'dilations', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None)), ('document', '
3f884662ad443d9ecc2b3734b4f61ad6
'))
paddle.fluid.layers.unfold (ArgSpec(args=['x', 'kernel_sizes', 'strides', 'paddings', 'dilations', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None)), ('document', '
f03cebb8a2ad0f128b8e86ccf399a0a3
'))
paddle.fluid.layers.deformable_roi_pooling (ArgSpec(args=['input', 'rois', 'trans', 'no_trans', 'spatial_scale', 'group_size', 'pooled_height', 'pooled_width', 'part_size', 'sample_per_part', 'trans_std', 'position_sensitive', 'name'], varargs=None, keywords=None, defaults=(False, 1.0, [1, 1], 1, 1, None, 1, 0.1, False, None)), ('document', 'e0e7bf35da2287efb015546f1b8350df'))
paddle.fluid.layers.filter_by_instag (ArgSpec(args=['ins', 'ins_tag', 'filter_tag', 'is_lod'], varargs=None, keywords=None, defaults=None), ('document', '7703a2088af8de4128b143ff1164ca4a'))
paddle.fluid.layers.shard_index (ArgSpec(args=['input', 'index_num', 'nshards', 'shard_id', 'ignore_value'], varargs=None, keywords=None, defaults=(-1,)), ('document', '3c6b30e9cd57b38d4a5fa1ade887f779'))
...
...
@@ -415,7 +415,7 @@ paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits',
paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', '543b2a40641260e745a76b1f7a25fb2a'))
paddle.fluid.layers.sigmoid_focal_loss (ArgSpec(args=['x', 'label', 'fg_num', 'gamma', 'alpha'], varargs=None, keywords=None, defaults=(2, 0.25)), ('document', '4702891755596c8853aaeb874a5fdb46'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', 'a7778d4f557c60dca52321673667690d'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'
], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'a82016342789ba9d85737e405f824ff1
'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'
, 'name'], varargs=None, keywords=None, defaults=(1.0, None)), ('document', 'b007f545ad41e66b814203bdb76516c6
'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random', 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', 'f2342042127b536a0a16390f149f1bba'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', '5cba014b41610431f8949e2d7336f1cc'))
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef'))
...
...
@@ -898,8 +898,8 @@ paddle.fluid.transpiler.RoundRobin.dispatch (ArgSpec(args=['self', 'varlist'], v
paddle.fluid.transpiler.RoundRobin.reset (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.transpiler.DistributeTranspilerConfig ('paddle.fluid.transpiler.distribute_transpiler.DistributeTranspilerConfig', ('document', 'beac6f89fe97eb8c66a25de5a09c56d2'))
paddle.fluid.transpiler.DistributeTranspilerConfig.__init__ (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.nets.simple_img_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True)), ('document', '
13f01ff80e8dfbd3427d90cf49bc62e
b'))
paddle.fluid.nets.sequence_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None)), ('document', '
d6a1e527b53f5cc15594fee307dfc5cf
'))
paddle.fluid.nets.simple_img_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True)), ('document', '
5e89c978199c4ecce2b26d5fed1ec52
b'))
paddle.fluid.nets.sequence_conv_pool (ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type', 'bias_attr'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max', None)), ('document', '
b2d435f782ac8ea3ca480b8d24e7f5b4
'))
paddle.fluid.nets.glu (ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,)), ('document', 'b87bacfc70dd3477ed25ef14aa01389a'))
paddle.fluid.nets.scaled_dot_product_attention (ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0)), ('document', 'b1a07a0000eb9103e3a143ca8c13de5b'))
paddle.fluid.nets.img_conv_group (ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True)), ('document', '6033b78da39b8b0ed302fbb0f67da502'))
...
...
paddle/fluid/operators/clip_op.cc
浏览文件 @
de99dee1
...
...
@@ -41,21 +41,22 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor)The input of clip op."
"The number of dimensions must be between [1, 9]."
);
AddOutput
(
"Out"
,
"(Tensor)The output of clip op with shape as input(X)"
);
AddAttr
<
AttrType
>
(
"min"
,
"(float)Minimum value, under which element is replaced by min."
);
AddAttr
<
AttrType
>
(
"max"
,
"(float)Maximum value, above which element is replaced by max"
);
"Tensor, the input of clip op, data type should be float32 or "
"float64."
);
AddOutput
(
"Out"
,
"Tensor, the clipped tensor, with the same shape and data type as "
"input(x)"
);
AddAttr
<
AttrType
>
(
"min"
,
"float number, the minimum value to clip by."
);
AddAttr
<
AttrType
>
(
"max"
,
"float number, the maximum value to clip by."
);
AddComment
(
R"DOC(
Clip Operator.
The clip operator limits the value of given input within an interval
. The
interval is specified with arguments 'min' and 'max':
The clip operator limits the value of given input within an interval
[min, max],
just as the following equation,
$$
Out = \
min(\max(X
, min), max)
Out = \
MIN(\MAX(x
, min), max)
$$
)DOC"
);
...
...
@@ -106,6 +107,8 @@ REGISTER_OPERATOR(clip, ops::ClipOp, ops::ClipOpMaker<float>,
ops
::
ClipGradOpDescMaker
,
ops
::
ClipInplaceInferer
);
REGISTER_OPERATOR
(
clip_grad
,
ops
::
ClipOpGrad
,
ops
::
ClipGradInplaceInferer
);
REGISTER_OP_CPU_KERNEL
(
clip
,
ops
::
ClipKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
clip
,
ops
::
ClipKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ClipKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
clip_grad
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
clip_grad
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/clip_op.cu
浏览文件 @
de99dee1
...
...
@@ -16,6 +16,8 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
clip
,
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
clip
,
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ClipKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
clip_grad
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
clip_grad
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ClipGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/crop_op.cc
浏览文件 @
de99dee1
...
...
@@ -207,6 +207,8 @@ REGISTER_OPERATOR(crop, ops::CropOp, ops::CropOpMaker,
ops
::
CropGradOpDescMaker
);
REGISTER_OPERATOR
(
crop_grad
,
ops
::
CropOpGrad
);
REGISTER_OP_CPU_KERNEL
(
crop
,
ops
::
CropKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
crop
,
ops
::
CropKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CropKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/crop_op.cu
浏览文件 @
de99dee1
...
...
@@ -15,6 +15,8 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
crop
,
ops
::
CropKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
crop
,
ops
::
CropKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
CropKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/psroi_pool_op.cc
浏览文件 @
de99dee1
...
...
@@ -25,14 +25,14 @@ class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"
(Tensor)
, "
"
Tensor
, "
"the input of PSROIPoolOp. "
"The format of input tensor is NCHW. Where N is the batch size, "
"C is the number of input channels, "
"H is the height of the input feature map, and "
"W is the width."
);
"W is the width.
The data type can be float32 or float64
"
);
AddInput
(
"ROIs"
,
"
(LoDTensor)
, "
"
LoDTensor
, "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4) "
"given as [(x1, y1, x2, y2), ...]. "
...
...
@@ -40,9 +40,10 @@ class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"(x2, y2) is the bottom right coordinates. "
"The roi batch index can be calculated from LoD."
);
AddOutput
(
"Out"
,
"
(Tensor)
, "
"
Tensor
, "
"the output of PSROIPoolOp is a 4-D Tensor with shape "
"(num_rois, output_channels, pooled_h, pooled_w)."
);
"(num_rois, output_channels, pooled_h, pooled_w). "
"The data type is the same as `x` "
);
AddAttr
<
int
>
(
"output_channels"
,
"(int), "
...
...
@@ -64,7 +65,7 @@ class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"the pooled output width."
)
.
SetDefault
(
1
);
AddComment
(
R"Doc(
**PSROIPool Operator**
**PSROIPool Operator
,** `rois` **of this op should be a LoDTensor
**
Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
de99dee1
...
...
@@ -2226,44 +2226,55 @@ def roi_perspective_transform(input,
rois
,
transformed_height
,
transformed_width
,
spatial_scale
=
1.0
):
spatial_scale
=
1.0
,
name
=
None
):
"""
ROI perspective transform op.
**The** `rois` **of this op should be a LoDTensor.**
Args:
input (Variable): The input of ROIPerspectiveTransformOp. The format of
ROI perspective transform op applies perspective transform to map each roi into an
rectangular region. Perspective transform is a type of transformation in linear algebra.
Parameters:
input (Variable): 4-D Tensor, input of ROIPerspectiveTransformOp. The format of
input tensor is NCHW. Where N is batch size, C is the
number of input channels, H is the height of the feature,
and W is the width of the feature.
rois (Variable):
ROIs (Regions of Interest) to be transformed. It should be
a 2-D LoDTensor of shape (num_rois, 8). Given as
and W is the width of the feature.
The data type is float32.
rois (Variable):
2-D LoDTensor, ROIs (Regions of Interest) to be transformed.
It should be
a 2-D LoDTensor of shape (num_rois, 8). Given as
[[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the
top left coordinates, and (x2, y2) is the top right
coordinates, and (x3, y3) is the bottom right coordinates,
and (x4, y4) is the bottom left coordinates.
transformed_height (integer): The height of transformed output.
transformed_width (integer): The width of transformed output.
and (x4, y4) is the bottom left coordinates. The data type is the
same as `input`
transformed_height (int): The height of transformed output.
transformed_width (int): The width of transformed output.
spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0
name(str, optional): The default value is None.
Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
tuple:
A tuple with three Variables. (out, mask, transform_matrix)
A tuple with three Variables. (out, mask, transform_matrix)
out: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape
(num_rois, channels, transformed_h, transformed_w).
(num_rois, channels, transformed_h, transformed_w).
The data type is the same as `input`
mask: The mask of ROIPerspectiveTransformOp which is a 4-D tensor with shape
(num_rois, 1, transformed_h, transformed_w).
(num_rois, 1, transformed_h, transformed_w).
The data type is int32
transform_matrix: The transform matrix of ROIPerspectiveTransformOp which is
a 2-D tensor with shape (num_rois, 9).
a 2-D tensor with shape (num_rois, 9). The data type is the same as `input`
Return Type:
tuple
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.
layers.data(name='x', shape=[
256, 28, 28], dtype='float32')
rois = fluid.
layers.data(name='rois', shape=[
8], lod_level=1, dtype='float32')
x = fluid.
data(name='x', shape=[100,
256, 28, 28], dtype='float32')
rois = fluid.
data(name='rois', shape=[None,
8], lod_level=1, dtype='float32')
out, mask, transform_matrix = fluid.layers.roi_perspective_transform(x, rois, 7, 7, 1.0)
"""
helper
=
LayerHelper
(
'roi_perspective_transform'
,
**
locals
())
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
de99dee1
此差异已折叠。
点击以展开。
python/paddle/fluid/nets.py
浏览文件 @
de99dee1
...
...
@@ -42,25 +42,24 @@ def simple_img_conv_pool(input,
act
=
None
,
use_cudnn
=
True
):
"""
The simple_img_conv_pool
is composed with one Convolution2d and one Pool2d
.
The simple_img_conv_pool
api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d`
.
Args:
input (Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output
feature channel.
input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
num_filters(int): The number of filters. It is the same as the output channels.
filter_size (int|list|tuple): The filter size. If filter_size is a list or
tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
the filter_size_H = filter_size_W = filter_size.
pool_size (int|list|tuple): The pooling size of
P
ool2d layer. If pool_size
pool_size (int|list|tuple): The pooling size of
p
ool2d layer. If pool_size
is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
Otherwise, the pool_size_H = pool_size_W = pool_size.
pool_stride (int|list|tuple): The pooling stride of
P
ool2d layer. If pool_stride
pool_stride (int|list|tuple): The pooling stride of
p
ool2d layer. If pool_stride
is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
pool_padding (int|list|tuple): The padding of
P
ool2d layer. If pool_padding is a list or
pool_padding (int|list|tuple): The padding of
p
ool2d layer. If pool_padding is a list or
tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
pool_type (str): Pooling type can be :math:`max` for max-pooling
and
:math:`avg` for
pool_type (str): Pooling type can be :math:`max` for max-pooling
or
:math:`avg` for
average-pooling. Default :math:`max`.
global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
pool_size and pool_padding while be ignored. Default False
...
...
@@ -95,13 +94,16 @@ def simple_img_conv_pool(input,
library is installed. Default: True
Return:
Variable: The result of input after Convolution2d and Pool2d.
4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`
Return Type:
Variable
Examples:
.. code-block:: python
import paddle.fluid as fluid
img = fluid.
layers.data(name='img', shape=[
1, 28, 28], dtype='float32')
img = fluid.
data(name='img', shape=[100,
1, 28, 28], dtype='float32')
conv_pool = fluid.nets.simple_img_conv_pool(input=img,
filter_size=5,
num_filters=20,
...
...
@@ -254,17 +256,23 @@ def sequence_conv_pool(input,
pool_type
=
"max"
,
bias_attr
=
None
):
"""
The sequence_conv_pool is composed with Sequence Convolution and Pooling.
**This api takes input as an LoDTensor. If input is a Tensor, please use**
:ref:`api_fluid_nets_simple_img_conv_pool` **instead**
The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv`
and :ref:`api_fluid_layers_sequence_pool` .
Args:
input (Variable): The input of sequence_conv, which supports variable-time
length input sequence. The underlying of input is a matrix with shape
input (Variable): 2-D LoDTensor, the input of sequence_conv,
which supports variable-time length input sequence.
The underlying of input is a matrix with shape
(T, N), where T is the total time steps in this mini-batch and N is
the input_hidden_size
the input_hidden_size
. The data type is float32 or float64.
num_filters(int): The number of filter.
filter_size (int): The filter size.
param_attr (ParamAttr): The parameters to the Sequence_conv Layer. Default: None.
act (str): Activation type for Sequence_conv Layer. Default: "sigmoid".
param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
act (str|None): Activation type for Sequence_conv Layer.
If set to None, no activation will be applied. Default: "sigmoid".
pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
Default :math:`max`.
...
...
@@ -274,8 +282,12 @@ def sequence_conv_pool(input,
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
Return:
Variable: The final result after Sequence Convolution and Pooling.
Returns:
The final result after sequence_conv and sequence_pool.
It is a 2-D Tensor, with the same data type as :attr:`input`
Return Type:
Variable
Examples:
.. code-block:: python
...
...
@@ -284,7 +296,7 @@ def sequence_conv_pool(input,
input_dim = 100 #len(word_dict)
emb_dim = 128
hid_dim = 512
data = fluid.
layers.data(name="words", shape=[
1], dtype="int64", lod_level=1)
data = fluid.
data(name="words", shape=[None,
1], dtype="int64", lod_level=1)
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
seq_conv = fluid.nets.sequence_conv_pool(input=emb,
num_filters=hid_dim,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录