sum_op.h 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
13
#include <vector>
Y
Yi Wang 已提交
14 15 16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
24 25
using SelectedRows = framework::SelectedRows;
using LoDTensor = framework::LoDTensor;
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Z
zhaoyuchen2018 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
template <typename DeviceContext, typename T>
void SelectedRowsCompute(const framework::ExecutionContext &context) {
  auto in_vars = context.MultiInputVar("X");
  auto out_var = context.OutputVar("Out");
  bool in_place = out_var == in_vars[0];

  if (in_place && in_vars.size() < 2) {
    return;
  }

  std::vector<const paddle::framework::SelectedRows *> inputs;
  SelectedRows temp_in0;

  if (in_place) {
    auto &in0 = in_vars[0]->Get<SelectedRows>();
    temp_in0.set_height(in0.height());
    temp_in0.set_rows(in0.rows());
    framework::TensorCopy(in0.value(), in0.place(), context.device_context(),
                          temp_in0.mutable_value());
    inputs.push_back(&temp_in0);
    for (size_t i = 1; i < in_vars.size(); ++i) {
      auto &in = in_vars[i]->Get<SelectedRows>();
      if (in.rows().size() > 0) {
        inputs.push_back(&in);
      }
    }
  } else {
    for (auto &in_var : in_vars) {
      auto &in = in_var->Get<SelectedRows>();
      if (in.rows().size() > 0) {
        inputs.push_back(&in_var->Get<SelectedRows>());
      }
    }
  }

  auto *out = context.Output<SelectedRows>("Out");
  out->mutable_rows()->clear();

  bool has_data = false;
  for (auto &in : inputs) {
    if (in->rows().size() > 0) {
      has_data = true;
      break;
    }
  }
  if (has_data) {
    math::scatter::MergeAdd<DeviceContext, T> merge_add;
    merge_add(context.template device_context<DeviceContext>(), inputs, out);

    out->SyncIndex();

  } else {
    // no data, just set a empty out tensor.
    out->mutable_value()->mutable_data<T>(framework::make_ddim({0}),
                                          context.GetPlace());
  }
}

template <typename DeviceContext, typename T>
void LodTensorArrayCompute(const framework::ExecutionContext &context) {
  auto in_vars = context.MultiInputVar("X");
  auto out_var = context.OutputVar("Out");
  bool in_place = out_var == in_vars[0];
  auto &out_array = *out_var->GetMutable<framework::LoDTensorArray>();
  for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
95
    PADDLE_ENFORCE_EQ(in_vars[i]->IsType<framework::LoDTensorArray>(), true,
96 97 98 99
                      platform::errors::InvalidArgument(
                          "Only support all inputs are TensorArray, "
                          "but inputs[%d] is not TensorArray.",
                          i));
Z
zhaoyuchen2018 已提交
100 101 102
    auto &in_array = in_vars[i]->Get<framework::LoDTensorArray>();

    for (size_t i = 0; i < in_array.size(); ++i) {
103
      if (in_array[i].IsInitialized() && (in_array[i].numel() != 0)) {
Z
zhaoyuchen2018 已提交
104 105 106
        if (i >= out_array.size()) {
          out_array.resize(i + 1);
        }
107
        if (!out_array[i].IsInitialized() || (out_array[i].numel() == 0)) {
Z
zhaoyuchen2018 已提交
108 109 110 111
          framework::TensorCopy(in_array[i], in_array[i].place(),
                                context.device_context(), &out_array[i]);
          out_array[i].set_lod(in_array[i].lod());
        } else {
112 113 114 115 116 117
          PADDLE_ENFORCE_EQ(
              out_array[i].lod(), in_array[i].lod(),
              platform::errors::InvalidArgument(
                  "The lod message between inputs[%d] and"
                  " outputs[%d] must be same, but now is not same.",
                  i, i));
Z
zhaoyuchen2018 已提交
118 119 120 121 122 123 124 125 126 127
          auto in = EigenVector<T>::Flatten(in_array[i]);
          auto result = EigenVector<T>::Flatten(out_array[i]);
          result.device(*context.template device_context<DeviceContext>()
                             .eigen_device()) = result + in;
        }
      }
    }
  }
}

Q
QI JUN 已提交
128
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
129
class SumKernel : public framework::OpKernel<T> {
130
 public:
131
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
132
    auto in_vars = context.MultiInputVar("X");
133
    size_t in_num = in_vars.size();
Q
QI JUN 已提交
134 135
    auto out_var = context.OutputVar("Out");

Y
Yu Yang 已提交
136 137
    bool in_place = out_var == in_vars[0];

Q
QI JUN 已提交
138
    if (out_var->IsType<framework::LoDTensor>()) {
139 140 141 142 143 144 145
      auto *out = out_var->GetMutable<framework::LoDTensor>();
      auto *out_ptr = out->mutable_data<T>(context.GetPlace());
      if (in_num >= 1 && in_vars[0]->IsType<framework::LoDTensor>()) {
        auto &in_0_tensor = in_vars[0]->Get<framework::LoDTensor>();
        if (in_0_tensor.numel() > 0) {
          in_place = (in_0_tensor.data<T>() == out_ptr);
        }
Y
Update  
Yang Yu 已提交
146
      }
147

Y
Update  
Yang Yu 已提交
148
      auto result = EigenVector<T>::Flatten(*out);
149 150 151
      auto &place =
          *context.template device_context<DeviceContext>().eigen_device();
      int start = in_place ? 1 : 0;
Y
Update  
Yang Yu 已提交
152
      if (!in_place) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166
        if ((in_num >= 2) && in_vars[0]->IsType<framework::LoDTensor>() &&
            in_vars[1]->IsType<framework::LoDTensor>()) {
          auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
          auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
          if (in_0.numel() && in_1.numel()) {
            auto in_0_e = EigenVector<T>::Flatten(in_0);
            auto in_1_e = EigenVector<T>::Flatten(in_1);
            result.device(place) = in_0_e + in_1_e;
            start = 2;
          }
        }
        if (start != 2) {
          math::SetConstant<DeviceContext, T> constant_functor;
          constant_functor(context.template device_context<DeviceContext>(),
C
chengduo 已提交
167
                           out, static_cast<T>(0));
168
        }
Y
Yu Yang 已提交
169
      }
Q
QI JUN 已提交
170

Q
QI JUN 已提交
171
      math::SelectedRowsAddToTensor<DeviceContext, T> functor;
Y
Yu Yang 已提交
172
      // If in_place, just skip the first tensor
173
      for (size_t i = start; i < in_num; i++) {
Q
QI JUN 已提交
174
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
175
          auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
176 177 178
          if (in_t.numel() == 0) {
            continue;
          }
Q
QI JUN 已提交
179 180 181
          auto in = EigenVector<T>::Flatten(in_t);
          result.device(place) = result + in;
        } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
182
          auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
Q
QI JUN 已提交
183
          functor(context.template device_context<DeviceContext>(), in_t, out);
Q
QI JUN 已提交
184 185 186 187 188
        } else {
          PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
        }
      }
    } else if (out_var->IsType<framework::SelectedRows>()) {
Z
zhaoyuchen2018 已提交
189
      SelectedRowsCompute<DeviceContext, T>(context);
190
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
Z
zhaoyuchen2018 已提交
191
      LodTensorArrayCompute<DeviceContext, T>(context);
192 193
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
S
sneaxiy 已提交
194
                   framework::ToTypeName(out_var->Type()));
195 196 197 198 199
    }
  }
};
}  // namespace operators
}  // namespace paddle