sum_op.h 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
13
#include <vector>
Y
Yi Wang 已提交
14 15 16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
24 25
using SelectedRows = framework::SelectedRows;
using LoDTensor = framework::LoDTensor;
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
31
class SumKernel : public framework::OpKernel<T> {
32
 public:
33
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
34
    auto in_vars = context.MultiInputVar("X");
35
    size_t in_num = in_vars.size();
Q
QI JUN 已提交
36 37
    auto out_var = context.OutputVar("Out");

Y
Yu Yang 已提交
38 39
    bool in_place = out_var == in_vars[0];

Q
QI JUN 已提交
40
    if (out_var->IsType<framework::LoDTensor>()) {
Y
Update  
Yang Yu 已提交
41
      auto *out = context.Output<LoDTensor>("Out");
Y
Yu Yang 已提交
42
      if (!in_place) {
Y
Refine  
Yang Yu 已提交
43
        out->mutable_data<T>(context.GetPlace());
Y
Update  
Yang Yu 已提交
44 45
      }
      auto result = EigenVector<T>::Flatten(*out);
46 47 48
      auto &place =
          *context.template device_context<DeviceContext>().eigen_device();
      int start = in_place ? 1 : 0;
Y
Update  
Yang Yu 已提交
49
      if (!in_place) {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
        if ((in_num >= 2) && in_vars[0]->IsType<framework::LoDTensor>() &&
            in_vars[1]->IsType<framework::LoDTensor>()) {
          auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
          auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
          if (in_0.numel() && in_1.numel()) {
            auto in_0_e = EigenVector<T>::Flatten(in_0);
            auto in_1_e = EigenVector<T>::Flatten(in_1);
            result.device(place) = in_0_e + in_1_e;
            start = 2;
          }
        }
        if (start != 2) {
          math::SetConstant<DeviceContext, T> constant_functor;
          constant_functor(context.template device_context<DeviceContext>(),
                           out, 0.0);
        }
Y
Yu Yang 已提交
66
      }
Q
QI JUN 已提交
67

Q
QI JUN 已提交
68
      math::SelectedRowsAddToTensor<DeviceContext, T> functor;
Y
Yu Yang 已提交
69
      // If in_place, just skip the first tensor
70
      for (size_t i = start; i < in_num; i++) {
Q
QI JUN 已提交
71
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
72
          auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
73 74 75
          if (in_t.numel() == 0) {
            continue;
          }
Q
QI JUN 已提交
76 77 78
          auto in = EigenVector<T>::Flatten(in_t);
          result.device(place) = result + in;
        } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
79
          auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
Q
QI JUN 已提交
80
          functor(context.template device_context<DeviceContext>(), in_t, out);
Q
QI JUN 已提交
81 82 83 84 85
        } else {
          PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
        }
      }
    } else if (out_var->IsType<framework::SelectedRows>()) {
Q
Qiao Longfei 已提交
86 87 88
      if (in_place && in_vars.size() < 2) {
        return;
      }
T
tangwei12 已提交
89

Q
qiaolongfei 已提交
90
      std::vector<const paddle::framework::SelectedRows *> inputs;
Q
Qiao Longfei 已提交
91
      SelectedRows temp_in0;
T
tangwei12 已提交
92

Q
Qiao Longfei 已提交
93 94 95 96 97 98 99 100 101
      if (in_place) {
        auto &in0 = in_vars[0]->Get<SelectedRows>();
        temp_in0.set_height(in0.height());
        temp_in0.set_rows(in0.rows());
        framework::TensorCopy(in0.value(), in0.place(),
                              context.device_context(),
                              temp_in0.mutable_value());
        inputs.push_back(&temp_in0);
        for (size_t i = 1; i < in_vars.size(); ++i) {
Q
Qiao Longfei 已提交
102
          auto &in = in_vars[i]->Get<SelectedRows>();
Q
Qiao Longfei 已提交
103
          if (in.rows().size() > 0) {
Q
Qiao Longfei 已提交
104 105
            inputs.push_back(&in);
          }
Q
Qiao Longfei 已提交
106 107 108
        }
      } else {
        for (auto &in_var : in_vars) {
Q
Qiao Longfei 已提交
109
          auto &in = in_var->Get<SelectedRows>();
Q
Qiao Longfei 已提交
110
          if (in.rows().size() > 0) {
Q
Qiao Longfei 已提交
111 112
            inputs.push_back(&in_var->Get<SelectedRows>());
          }
Q
Qiao Longfei 已提交
113
        }
114
      }
Q
QI JUN 已提交
115

Q
Qiao Longfei 已提交
116 117 118
      auto *out = context.Output<SelectedRows>("Out");
      out->mutable_rows()->clear();

Q
Qiao Longfei 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
      bool has_data = false;
      for (auto &in : inputs) {
        if (in->rows().size() > 0) {
          has_data = true;
          break;
        }
      }
      if (has_data) {
        math::scatter::MergeAdd<DeviceContext, T> merge_add;
        merge_add(context.template device_context<DeviceContext>(), inputs,
                  out);
      } else {
        // no data, just set a empty out tensor.
        out->mutable_value()->mutable_data<T>(framework::make_ddim({0}),
                                              context.GetPlace());
      }
135 136 137 138 139 140 141 142 143 144 145 146 147
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
      auto &out_array = *out_var->GetMutable<framework::LoDTensorArray>();
      for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
        PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensorArray>(),
                       "Only support all inputs are TensorArray");
        auto &in_array = in_vars[i]->Get<framework::LoDTensorArray>();

        for (size_t i = 0; i < in_array.size(); ++i) {
          if (in_array[i].numel() != 0) {
            if (i >= out_array.size()) {
              out_array.resize(i + 1);
            }
            if (out_array[i].numel() == 0) {
Y
Yi Wang 已提交
148 149
              framework::TensorCopy(in_array[i], in_array[i].place(),
                                    context.device_context(), &out_array[i]);
150 151 152 153 154
              out_array[i].set_lod(in_array[i].lod());
            } else {
              PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod());
              auto in = EigenVector<T>::Flatten(in_array[i]);
              auto result = EigenVector<T>::Flatten(out_array[i]);
Q
QI JUN 已提交
155 156
              result.device(*context.template device_context<DeviceContext>()
                                 .eigen_device()) = result + in;
157 158 159 160 161 162 163
            }
          }
        }
      }
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
                   out_var->Type().name());
164 165 166 167 168
    }
  }
};
}  // namespace operators
}  // namespace paddle