sum_op.h 6.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
13
#include <vector>
Y
Yi Wang 已提交
14 15 16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
19 20 21 22 23

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
Q
QI JUN 已提交
24 25
using SelectedRows = framework::SelectedRows;
using LoDTensor = framework::LoDTensor;
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Z
zhaoyuchen2018 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
template <typename DeviceContext, typename T>
void SelectedRowsCompute(const framework::ExecutionContext &context) {
  auto in_vars = context.MultiInputVar("X");
  auto out_var = context.OutputVar("Out");
  bool in_place = out_var == in_vars[0];

  if (in_place && in_vars.size() < 2) {
    return;
  }

  std::vector<const paddle::framework::SelectedRows *> inputs;
  SelectedRows temp_in0;

  if (in_place) {
    auto &in0 = in_vars[0]->Get<SelectedRows>();
    temp_in0.set_height(in0.height());
    temp_in0.set_rows(in0.rows());
    framework::TensorCopy(in0.value(), in0.place(), context.device_context(),
                          temp_in0.mutable_value());
    inputs.push_back(&temp_in0);
    for (size_t i = 1; i < in_vars.size(); ++i) {
      auto &in = in_vars[i]->Get<SelectedRows>();
      if (in.rows().size() > 0) {
        inputs.push_back(&in);
      }
    }
  } else {
    for (auto &in_var : in_vars) {
      auto &in = in_var->Get<SelectedRows>();
      if (in.rows().size() > 0) {
        inputs.push_back(&in_var->Get<SelectedRows>());
      }
    }
  }

  auto *out = context.Output<SelectedRows>("Out");
  out->mutable_rows()->clear();

  bool has_data = false;
  for (auto &in : inputs) {
    if (in->rows().size() > 0) {
      has_data = true;
      break;
    }
  }
  if (has_data) {
    math::scatter::MergeAdd<DeviceContext, T> merge_add;
    merge_add(context.template device_context<DeviceContext>(), inputs, out);

    out->SyncIndex();

  } else {
    // no data, just set a empty out tensor.
    out->mutable_value()->mutable_data<T>(framework::make_ddim({0}),
                                          context.GetPlace());
  }
}

template <typename DeviceContext, typename T>
void LodTensorArrayCompute(const framework::ExecutionContext &context) {
  auto in_vars = context.MultiInputVar("X");
  auto out_var = context.OutputVar("Out");
  bool in_place = out_var == in_vars[0];
  auto &out_array = *out_var->GetMutable<framework::LoDTensorArray>();
  for (size_t i = in_place ? 1 : 0; i < in_vars.size(); ++i) {
    PADDLE_ENFORCE(in_vars[i]->IsType<framework::LoDTensorArray>(),
                   "Only support all inputs are TensorArray");
    auto &in_array = in_vars[i]->Get<framework::LoDTensorArray>();

    for (size_t i = 0; i < in_array.size(); ++i) {
      if (in_array[i].numel() != 0) {
        if (i >= out_array.size()) {
          out_array.resize(i + 1);
        }
        if (out_array[i].numel() == 0) {
          framework::TensorCopy(in_array[i], in_array[i].place(),
                                context.device_context(), &out_array[i]);
          out_array[i].set_lod(in_array[i].lod());
        } else {
          PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod());
          auto in = EigenVector<T>::Flatten(in_array[i]);
          auto result = EigenVector<T>::Flatten(out_array[i]);
          result.device(*context.template device_context<DeviceContext>()
                             .eigen_device()) = result + in;
        }
      }
    }
  }
}

Q
QI JUN 已提交
120
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
121
class SumKernel : public framework::OpKernel<T> {
122
 public:
123
  void Compute(const framework::ExecutionContext &context) const override {
Y
Yu Yang 已提交
124
    auto in_vars = context.MultiInputVar("X");
125
    size_t in_num = in_vars.size();
Q
QI JUN 已提交
126 127
    auto out_var = context.OutputVar("Out");

Y
Yu Yang 已提交
128 129
    bool in_place = out_var == in_vars[0];

Q
QI JUN 已提交
130
    if (out_var->IsType<framework::LoDTensor>()) {
Y
Update  
Yang Yu 已提交
131
      auto *out = context.Output<LoDTensor>("Out");
Y
Yu Yang 已提交
132
      if (!in_place) {
Y
Refine  
Yang Yu 已提交
133
        out->mutable_data<T>(context.GetPlace());
Y
Update  
Yang Yu 已提交
134 135
      }
      auto result = EigenVector<T>::Flatten(*out);
136 137 138
      auto &place =
          *context.template device_context<DeviceContext>().eigen_device();
      int start = in_place ? 1 : 0;
Y
Update  
Yang Yu 已提交
139
      if (!in_place) {
140 141 142 143 144 145 146 147 148 149 150 151 152 153
        if ((in_num >= 2) && in_vars[0]->IsType<framework::LoDTensor>() &&
            in_vars[1]->IsType<framework::LoDTensor>()) {
          auto &in_0 = in_vars[0]->Get<framework::LoDTensor>();
          auto &in_1 = in_vars[1]->Get<framework::LoDTensor>();
          if (in_0.numel() && in_1.numel()) {
            auto in_0_e = EigenVector<T>::Flatten(in_0);
            auto in_1_e = EigenVector<T>::Flatten(in_1);
            result.device(place) = in_0_e + in_1_e;
            start = 2;
          }
        }
        if (start != 2) {
          math::SetConstant<DeviceContext, T> constant_functor;
          constant_functor(context.template device_context<DeviceContext>(),
C
chengduo 已提交
154
                           out, static_cast<T>(0));
155
        }
Y
Yu Yang 已提交
156
      }
Q
QI JUN 已提交
157

Q
QI JUN 已提交
158
      math::SelectedRowsAddToTensor<DeviceContext, T> functor;
Y
Yu Yang 已提交
159
      // If in_place, just skip the first tensor
160
      for (size_t i = start; i < in_num; i++) {
Q
QI JUN 已提交
161
        if (in_vars[i]->IsType<framework::LoDTensor>()) {
162
          auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
163 164 165
          if (in_t.numel() == 0) {
            continue;
          }
Q
QI JUN 已提交
166 167 168
          auto in = EigenVector<T>::Flatten(in_t);
          result.device(place) = result + in;
        } else if (in_vars[i]->IsType<framework::SelectedRows>()) {
169
          auto &in_t = in_vars[i]->Get<framework::SelectedRows>();
Q
QI JUN 已提交
170
          functor(context.template device_context<DeviceContext>(), in_t, out);
Q
QI JUN 已提交
171 172 173 174 175
        } else {
          PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
        }
      }
    } else if (out_var->IsType<framework::SelectedRows>()) {
Z
zhaoyuchen2018 已提交
176
      SelectedRowsCompute<DeviceContext, T>(context);
177
    } else if (out_var->IsType<framework::LoDTensorArray>()) {
Z
zhaoyuchen2018 已提交
178
      LodTensorArrayCompute<DeviceContext, T>(context);
179 180
    } else {
      PADDLE_THROW("Unexpected branch, output variable type is %s",
S
sneaxiy 已提交
181
                   framework::ToTypeName(out_var->Type()));
182 183 184 185 186
    }
  }
};
}  // namespace operators
}  // namespace paddle