op_gen.py 52.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else

32 33
#include <vector>

34 35
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
36
#include "paddle/ir/core/op_base.h"
37 38
#include "paddle/fluid/dialect/utils.h"
#include "paddle/fluid/dialect/pd_interface.h"
39

H
hong 已提交
40 41 42 43
#include "paddle/fluid/interface/infershape.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"

44 45 46 47 48 49 50 51 52 53 54 55 56 57
{input}
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
58
  static OpInfoTuple GetOpInfo();
59
  static void build({build_args});
60 61
  static void verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes);
{get_inputs_and_outputs}
H
hong 已提交
62
{exclusive_interface}
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

OP_GET_INPUT_TEMPLATE = """  ir::OpOperand {input_name}() {{ return operation()->GetOperandByIndex({input_index}); }}
"""
OP_GET_OUTPUT_TEMPLATE = """  ir::OpResult {output_name}() {{ return operation()->GetResultByIndex({output_index}); }}
"""

# =====================================
# String Template for cc file code gen
# =====================================
CC_FILE_TEMPLATE = """#include "{h_file}"
#include "paddle/fluid/dialect/pd_type.h"
#include "paddle/fluid/dialect/pd_attribute.h"
83 84 85
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/ir_context.h"
86
#include "paddle/phi/core/enforce.h"
87 88 89 90 91 92 93 94
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"

95

H
hong 已提交
96 97 98 99 100 101 102 103
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/core/infermeta_utils.h"

104 105 106 107 108 109 110
{input}
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

111
# get op info
112 113
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
114 115 116 117 118
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
  paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}});
  return std::make_tuple(inputs, attributes, outputs, run_time_info);
119 120 121 122 123 124 125 126 127 128 129 130
}}
"""
CONSTRUCT_INPUT_INFO_TEMPLATE = (
    """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer})"""
)
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

131 132 133 134 135 136 137 138 139
# build
OP_BUILD_TEMPLATE = """
void {op_name}::build({build_args}) {{
{build_inputs}
{build_attributes}
{build_outputs}
}}
"""

140
# verify
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
OP_VERIFY_TEMPLATE = """
void {op_name}::verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
  VLOG(4) << "Verifying inputs, outputs and attributes for: {op_name}.";

  // Verify inputs type:
  PADDLE_ENFORCE_EQ(inputs.size(), {inputs_size},
                    phi::errors::PreconditionNotMet("The size %d of inputs must be equal to {inputs_size}.", inputs.size()));
  {inputs_type_check}
  // Verify outputs type:
  PADDLE_ENFORCE_EQ(outputs.size(), {outputs_size},
                    phi::errors::PreconditionNotMet("The size %d of outputs must be equal to {outputs_size}.", outputs.size()));
  {outputs_type_check}
  // Verify if attributes contain attribute name in attributes_name:
  {attributes_check}
}}
"""

158 159 160 161 162 163 164 165
GRAD_OP_VERIFY_TEMPLATE = """
void {op_name}::verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
  (void)inputs;
  (void)outputs;
  (void)attributes;
}}
"""

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
INPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  """
INPUT_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}].type().isa<ir::VectorType>()) {{
    for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    if (inputs[{index}].type().isa<ir::VectorType>()) {{
      for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }}
  """

OUTPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  """
OUTPUT_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}].isa<ir::VectorType>()) {{
    for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    if (outputs[{index}].isa<ir::VectorType>()) {{
      for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }}
  """

228
ATTRIBUTE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<{standard}>(), true,
229 230
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  """
231
ATTRIBUTE_VECTOR_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<ir::ArrayAttribute>(), true,
232 233 234 235 236 237
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  for (size_t i = 0; i < attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>().size(); i++) {{
    PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>()[i].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  }}
  """
H
hong 已提交
238 239 240 241 242 243
OP_INFER_SHAPE_TEMPLATE = """
void {op_name}::InferShape( phi::InferMetaContext *infer_meta ) {{
  auto fn = PD_INFER_META(phi::{infer_meta_func});
  fn(infer_meta);
}}
"""
244 245


246 247 248 249 250 251 252 253 254 255 256 257
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


258
# =====================================
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
            phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op'])
            if op_name == phi_name:
                return compat
        return None


# =====================================
# Parse Op Information From Yaml
277 278
# =====================================
class OpInfoParser:
279
    def __init__(self, op_yaml_item, op_compat_item):
280
        self.op_yaml_item = op_yaml_item
281
        self.op_compat_item = op_compat_item
282
        self.op_phi_name = self.parse_op_phi_name()
283
        # parse inputs
284 285 286
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
287
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
288 289 290
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
291
        # parse outputs
292 293
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
294
        self.output_size_list = self.parse_output_size_list()
295
        self.output_optional_list = self.parse_output_optional_list()
296
        self.output_intermediate_list = self.parse_output_intermediate_list()
297 298 299 300 301
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
302
        # parse attributes
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
            'Scalar(int)': ['paddle::dialect::ScalarAttribute', 'int'],
            'Scalar(int64_t)': ['paddle::dialect::ScalarAttribute', 'int64_t'],
            'Scalar(float)': ['paddle::dialect::ScalarAttribute', 'float'],
            'Scalar(dobule)': ['paddle::dialect::ScalarAttribute', 'dobule'],
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
                'std::vector<Scalar>',
            ],
            'int': ['ir::Int32_tAttribute', 'int'],
            'int32_t': ['ir::Int32_tAttribute', 'int32_t'],
            'int64_t': ['ir::Int64_tAttribute', 'int64_t'],
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
                'std::vector<float>',
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
                'std::vecot<bool>',
            ],
            'str': ['ir::StrAttribute', 'std::string'],
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
                'std::vector<std::string>',
            ],
            'Place': ['paddle::dialect::PlaceAttribute', 'Place'],
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
                'ir::ArrayAttribute<ir::Int64_tAttribute>',
                'std::vector<int64_t>',
            ],
            'int[]': [
                'ir::ArrayAttribute<ir::Int32_tAttribute>',
                'std::vector<int>',
            ],
        }
350 351
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
352 353 354
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
355
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
356 357 358
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
359 360
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

361 362 363
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
364 365 366 367 368
        if 'infer_meta' in self.op_yaml_item:
            self.infer_shape_func = self.op_yaml_item['infer_meta']["func"]
        else:
            self.infer_shape_func = None

369 370 371 372 373 374 375 376 377
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    def parse_op_phi_name(self):
        if self.parse_op_inplace_info() is None:
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
417 418 419 420
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
421 422
        return optional_list

423 424 425 426 427 428 429 430 431
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

451 452 453 454 455 456 457 458 459
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

460 461 462 463
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
464 465 466 467
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
468
            else:
469
                optional_list.append("false")
470 471
        return optional_list

472 473 474 475 476 477 478 479 480 481 482 483
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

484 485 486 487 488 489
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

508 509 510 511
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
512
                attribute_info['typename'] in self.attr_types_map
513
            ), f"{self.op_phi_name} : Attr type error."
514
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
515 516
        return type_list

517 518 519 520 521 522 523 524 525
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

526 527 528 529 530 531 532 533
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
534
            else:
535 536
                default_value_list.append(None)
        return default_value_list
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
568 569 570 571 572 573 574 575 576 577 578


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
579
# Generate Op Definition Files
580
# =====================================
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
def GenBuildInputArgsStr(
    op_input_name_list,
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
    for_func_define=True,
):
    '''
    Example: ir::Builder &builder, ir::OperationArgument &argument, ir::OpResult x_, phi::DataType dtype=phi::DataType::UNDEFINED, phi::Place place={}
    '''
    build_args_str = "ir::Builder &builder, ir::OperationArgument &argument"
    if len(op_input_name_list) > 0:
        for input_name in op_input_name_list:
            build_args_str += ", ir::OpResult " + input_name + "_"
    for attr_idx in range(len(op_attribute_name_list)):
        build_args_str += (
            ", "
            + op_attribute_build_arg_type_list[attr_idx]
            + " "
            + op_attribute_name_list[attr_idx]
        )
        if for_func_define:
            if op_attribute_default_value_list[attr_idx] is not None:
                default_value = op_attribute_default_value_list[attr_idx]
                if op_attribute_build_arg_type_list[attr_idx] != "std::string":
                    if default_value[0] == "'" or default_value[0] == '"':
                        default_value = default_value[1:]
                    if default_value[-1] == "'" or default_value[-1] == '"':
                        default_value = default_value[0:-1]
                build_args_str += "=" + default_value
    return build_args_str


def GenBuildInputs(op_input_name_list):
    BUILD_INPUT_TEMPLATE = """  std::vector<ir::OpResult> argument_inputs = {{{inputs_args}}};
  argument.addOperands(argument_inputs.begin(), argument_inputs.end());
"""
    build_input_str = ""
    if len(op_input_name_list) > 0:
        inputs_args_str = "_, ".join(op_input_name_list) + "_"
        build_input_str = BUILD_INPUT_TEMPLATE.format(
            inputs_args=inputs_args_str
        )
    return build_input_str


def GenBuildAttributes(op_attribute_name_list, op_attribute_type_list):
    INTARRAY_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::IntArray({attr}));
"""
    SCALAR_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::Scalar({attr}));
"""
    STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), {attr});
"""
    ARRAY_ATTRIBUTE_TEMPLATE = """  std::vector<ir::Attribute> vec_{attr_name};
  for (size_t i = 0; i < static_cast<size_t>({attr_size}); i++) {{
    {create_attribute}
    vec_{attr_name}.push_back(attr_{attr_name});
  }}
  ir::Attribute attr_{attr_name} = ir::ArrayAttribute::get(ir::IrContext::Instance(), vec_{attr_name});
"""
    attr_str = ""
    for idx in range(len(op_attribute_name_list)):
        if "ir::ArrayAttribute<" in op_attribute_type_list[idx]:
            inner_attribute_type = op_attribute_type_list[idx][19:-1]
            if inner_attribute_type == "paddle::dialect::IntArrayAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
                    attr_name=op_attribute_name_list[idx],
                    attr_size=op_attribute_name_list[idx] + ".size()",
                    create_attribute=INTARRAY_STR_TEMPLATE.format(
                        attr_name=op_attribute_name_list[idx],
                        op_attribute_type=inner_attribute_type,
                        attr=op_attribute_name_list[idx] + "[i]",
                    ),
                )
            elif inner_attribute_type == "paddle::dialect::ScalarAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
                    attr_name=op_attribute_name_list[idx],
                    attr_size=op_attribute_name_list[idx] + ".size()",
                    create_attribute=SCALAR_STR_TEMPLATE.format(
                        attr_name=op_attribute_name_list[idx],
                        op_attribute_type=inner_attribute_type,
                        attr=op_attribute_name_list[idx] + "[i]",
                    ),
                )
            else:
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
                    attr_name=op_attribute_name_list[idx],
                    attr_size=op_attribute_name_list[idx] + ".size()",
                    create_attribute=STR_TEMPLATE.format(
                        attr_name=op_attribute_name_list[idx],
                        op_attribute_type=inner_attribute_type,
                        attr=op_attribute_name_list[idx] + "[i]",
                    ),
                )
        elif (
            op_attribute_type_list[idx] == "paddle::dialect::IntArrayAttribute"
        ):
            attr_str += INTARRAY_STR_TEMPLATE.format(
                attr_name=op_attribute_name_list[idx],
                op_attribute_type=op_attribute_type_list[idx],
                attr=op_attribute_name_list[idx],
            )

        elif op_attribute_type_list[idx] == "paddle::dialect::ScalarAttribute":
            attr_str += SCALAR_STR_TEMPLATE.format(
                attr_name=op_attribute_name_list[idx],
                op_attribute_type=op_attribute_type_list[idx],
                attr=op_attribute_name_list[idx],
            )
        else:
            attr_str += STR_TEMPLATE.format(
                attr_name=op_attribute_name_list[idx],
                op_attribute_type=op_attribute_type_list[idx],
                attr=op_attribute_name_list[idx],
            )
        attr_str += """  argument.addAttribute("{attr_name}", attr_{attr_name});\n""".format(
            attr_name=op_attribute_name_list[idx]
        )

    return attr_str


def GenBuildOutputs(
    op_input_name_list,
    op_input_type_list,
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
):
    build_output_str = ""
    CREATE_INPUT_METATENSOR_TEMPLATE = """  phi::DenseTensor dense_{name};
  dense_{name}.set_meta(
    phi::DenseTensorMeta(TransToPhiDataType({name}.dtype()),
                         {name}.dims(),
                         {name}.data_layout(),
                         {name}.lod(),
                         {name}.offset())
    );
  phi::MetaTensor meta_{name}(&dense_{name});
"""
    CREATE_INPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name}({name}.size(), phi::DenseTensor());
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < static_cast<size_t>({name}.size()); i++) {{
    vec_dense_{name}[i].set_meta(
        phi::DenseTensorMeta(TransToPhiDataType({name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dtype()),
                             {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dims(),
                             {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().data_layout(),
                             {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().lod(),
                             {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().offset())
        );
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
  std::vector<const phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
 """
    CREATE_OUTPUT_METATENSOR_TEMPLATE = """  phi::DenseTensor dense_{name};
  phi::MetaTensor meta_{name}(&dense_{name});
"""
    CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name}(({output_size}), phi::DenseTensor());
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
  std::vector<phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
"""
    # Prepar input type
    for idx in range(len(op_input_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_input_type_list[idx]:
            build_output_str += "  ir::VectorType {name} = {name}_.type().dyn_cast<ir::VectorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )
        # is a Tensor
        else:
            build_output_str += "  paddle::dialect::DenseTensorType {name} = {name}_.type().dyn_cast<paddle::dialect::DenseTensorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )

    # Prepare inputs for infer meta
    infer_meta_args = []
    for idx in range(len(op_infer_meta_map['param'])):
        # is input
        if op_infer_meta_map['param'][idx] in op_input_name_list:
            if (
                "meta_" + op_infer_meta_map['param'][idx]
            ) not in infer_meta_args:
                # is a vector<Tensor>
                if (
                    'ir::VectorType'
                    in op_input_type_list[
                        op_input_name_list.index(
                            op_infer_meta_map['param'][idx]
                        )
                    ]
                ):
                    build_output_str += (
                        CREATE_INPUT_VEC_METATENSOR_TEMPLATE.format(
                            name=op_infer_meta_map['param'][idx]
                        )
                    )
                # is a Tensor
                else:
                    build_output_str += CREATE_INPUT_METATENSOR_TEMPLATE.format(
                        name=op_infer_meta_map['param'][idx]
                    )

            infer_meta_args.append("meta_" + op_infer_meta_map['param'][idx])
        # is attribute
        else:
            infer_meta_args.append(op_infer_meta_map['param'][idx])

    # Prepare outputs for infer meta
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
            infer_meta_args.append(f"meta_{op_output_name_list[idx]}")
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )
            infer_meta_args.append(f"&meta_{op_output_name_list[idx]}")

    # Execute infer meta function
    CREATE_INFER_META_FUNC_TEMPLATE = """
  phi::{func}({args});
"""
    build_output_str += CREATE_INFER_META_FUNC_TEMPLATE.format(
        func=op_infer_meta_map['func'], args=", ".join(infer_meta_args)
    )

    # use dense_{name} or vec_dense_{name} to create Outputs type
    build_output_str += "\n  std::vector<ir::Type> argument_outputs;"

    CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE = """
  ir::Type {name}_dense_tensor_type = paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(dense_{name}.dtype()), dense_{name}.dims(), dense_{name}.layout(), dense_{name}.lod(), dense_{name}.offset());
  argument_outputs.push_back({name}_dense_tensor_type);
"""
    CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE = """
  std::vector<ir::Type> {name}_types;
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    {name}_types.push_back(paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(vec_dense_{name}[i].dtype()), vec_dense_{name}[i].dims(), vec_dense_{name}[i].layout(), vec_dense_{name}[i].lod(), vec_dense_{name}[i].offset()));
  }}
  ir::Type {name}_vector_type = ir::VectorType::get(ir::IrContext::Instance(), {name}_types);
  argument_outputs.push_back({name}_vector_type);
"""
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )

    build_output_str += "  argument.addTypes(argument_outputs.begin(), argument_outputs.end());\n"

    return build_output_str


855 856
def OpGenerator(
    op_yaml_files,
857
    op_compat_yaml_file,
858 859 860 861 862 863 864 865 866 867 868 869
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
870 871
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

872 873 874 875 876 877 878
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
879 880 881
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
882 883 884 885 886 887 888 889 890 891

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
        # get op info
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
892
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
893 894
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
895
        op_output_size_list = op_info.output_size_list
896
        op_output_optional_list = op_info.output_optional_list
897
        op_output_intermediate_list = op_info.output_intermediate_list
898 899
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
900
        op_attribute_data_type_list = op_info.attribute_data_type_list
901 902 903 904
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
905
        op_interfaces = ["GetOpInfoInterface"]
906 907
        op_traits = []

H
hong 已提交
908 909 910 911 912 913 914
        exclusive_interface_str = ""
        if op_info.infer_shape_func:
            op_interfaces += ["InferShapeInterface"]
            exclusive_interface_str += (
                "  static void InferShape( phi::InferMetaContext *infer_meta );"
            )

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

            # gen interface/trait str
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

            op_get_inputs_outputs_str = ""
            for idx in range(len(op_input_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_input_name_list[idx],
                    input_index=idx,
                )
            for idx in range(len(op_output_name_list)):
                op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format(
                    output_name=op_output_name_list[idx],
                    output_index=idx,
                )
939

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            # gen build str
            build_define_input_args_str = ""
            build_declare_input_args_str = ""
            build_func_declare_str = ""
            if op_infer_meta_map is not None:
                build_define_input_args_str = GenBuildInputArgsStr(
                    op_input_name_list,
                    op_attribute_name_list,
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
                    True,
                )
                build_declare_input_args_str = GenBuildInputArgsStr(
                    op_input_name_list,
                    op_attribute_name_list,
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
                    False,
                )
                build_inputs_str = GenBuildInputs(op_input_name_list)
                build_attributes_str = GenBuildAttributes(
                    op_attribute_name_list, op_attribute_type_list
                )
                build_outputs_str = GenBuildOutputs(
                    op_input_name_list,
                    op_input_type_list,
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
                )
                build_func_declare_str = OP_BUILD_TEMPLATE.format(
                    op_name=op_class_name,
                    build_args=build_declare_input_args_str,
                    build_inputs=build_inputs_str,
                    build_attributes=build_attributes_str,
                    build_outputs=build_outputs_str,
                )
            else:
                build_func_declare_str = OP_BUILD_TEMPLATE.format(
                    op_name=op_class_name,
                    build_args=build_declare_input_args_str,
                    build_inputs="",
                    build_attributes="",
                    build_outputs="",
                )

987 988 989 990 991 992 993 994 995
            # gen op_declare_str/op_defined_str
            if len(op_attribute_name_list) == 0:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
996
                    build_args=build_define_input_args_str,
997
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
998
                    exclusive_interface=exclusive_interface_str,
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
                        attribute_num=len(op_attribute_name_list)
                    ),
                    attribute_num=len(op_attribute_name_list),
1011
                    build_args=build_define_input_args_str,
1012
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1013
                    exclusive_interface=exclusive_interface_str,
1014 1015 1016 1017 1018 1019 1020 1021 1022
                )
                attribute_names_str = (
                    '"' + '", "'.join(op_attribute_name_list) + '"'
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
                    attribute_num=len(op_attribute_name_list),
                    attribute_names=attribute_names_str,
                )
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            # generate get op info funciton: inputs
            inputs_info_str = ""
            if len(op_input_name_list) > 0:
                input_info_list = []
                for idx in range(len(op_input_name_list)):
                    input_info_list.append(
                        CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                            name=op_input_name_list[idx],
                            typename=op_input_type_list[idx],
                            optional=op_input_optional_list[idx],
                            no_need_buffer=op_input_no_need_buffer_list[idx],
                        )
1036
                    )
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
                inputs_info_str = ", ".join(input_info_list)

            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1051
                    )
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
                outputs_info_str = ", ".join(output_info_list)

            # generate get op info funciton: attributes
            attribute_info_str = ""
            if len(op_attribute_name_list) > 0:
                attribute_info_list = []
                for idx in range(len(op_attribute_name_list)):
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
                            name=op_attribute_name_list[idx],
                            typename=op_attribute_type_list[idx],
                            data_type=op_attribute_data_type_list[idx],
                        )
1065
                    )
1066
                attribute_info_str = ", ".join(attribute_info_list)
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
            kernel_func_str = ""
            kernel_param_str = ""
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])

1080 1081 1082 1083 1084
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1085 1086 1087 1088
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1089
            )
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

            # generate op verify function: inputs_type_check_str
            if len(op_input_type_list) == 0:
                inputs_type_check_str = (
                    "// Inputs num is 0, not need to check inputs type."
                )
            else:
                inputs_type_check_str = ""
            for idx in range(len(op_input_type_list)):
                input_type = op_input_type_list[idx]
                is_optional = op_input_optional_list[idx]
                is_vector = False
                if input_type.startswith("ir::VectorType<"):
                    is_vector = True
                    input_type = input_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=input_type
                            )
                        )
                    else:
                        check_str = INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                else:
                    if is_vector:
                        check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                    else:
                        check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                inputs_type_check_str += check_str

            # generate op verify function: outputs_type_check_str
            if len(op_output_type_list) == 0:
                outputs_type_check_str = (
                    "// Outputs num is 0, not need to check outputs type."
                )
            else:
                outputs_type_check_str = ""
            for idx in range(len(op_output_type_list)):
                output_type = op_output_type_list[idx]
                is_optional = op_output_optional_list[idx]
                is_vector = False
                if output_type.startswith("ir::VectorType<"):
                    is_vector = True
                    output_type = output_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=output_type
                            )
                        )
                    else:
                        check_str = OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
1152 1153 1154
                            index=idx, standard=output_type
                        )
                else:
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
                    if is_vector:
                        check_str = OUTPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                    else:
                        check_str = OUTPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                outputs_type_check_str += check_str

            # generate op verify function: attributes_check_str
            if len(op_attribute_name_list) == 0:
                attributes_check_str = (
                    "// Attributes num is 0, not need to check attributes type."
                )
1170
            else:
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                attributes_check_str = ""
            for idx in range(len(op_attribute_name_list)):
                attribute_name = op_attribute_name_list[idx]
                attribute_type = op_attribute_type_list[idx]
                if attribute_type.startswith("ir::ArrayAttribute<"):
                    attribute_type = attribute_type[19:-1]
                    attributes_check_str += (
                        ATTRIBUTE_VECTOR_CHECK_TEMPLATE.format(
                            attribute_name=attribute_name,
                            standard=attribute_type,
                        )
1182 1183
                    )
                else:
1184 1185
                    attributes_check_str += ATTRIBUTE_CHECK_TEMPLATE.format(
                        attribute_name=attribute_name, standard=attribute_type
1186 1187
                    )

1188
            # generate op verify function
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
            if "GradOp" in op_class_name or "Grad_Op" in op_class_name:
                op_verify_str = GRAD_OP_VERIFY_TEMPLATE.format(
                    op_name=op_class_name,
                )
            else:
                op_verify_str = OP_VERIFY_TEMPLATE.format(
                    op_name=op_class_name,
                    inputs_size=len(op_input_type_list),
                    outputs_size=len(op_output_type_list),
                    inputs_type_check=inputs_type_check_str,
                    outputs_type_check=outputs_type_check_str,
                    attributes_check=attributes_check_str,
                )
1202

H
hong 已提交
1203 1204 1205 1206 1207 1208 1209
            op_infer_shape_str = ""
            if op_info.infer_shape_func:
                op_infer_shape_str = OP_INFER_SHAPE_TEMPLATE.format(
                    op_name=op_class_name,
                    infer_meta_func=op_info.infer_shape_func,
                )

1210 1211 1212 1213
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1214
            ops_defined_list.append(build_func_declare_str)
1215
            ops_defined_list.append(op_verify_str)
H
hong 已提交
1216
            ops_defined_list.append(op_infer_shape_str)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
        op_declare=op_list_str, input=head_file_str
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
    source_file_str = CC_FILE_TEMPLATE.format(
1245
        h_file=op_def_h_file[:-4], input=source_file_str
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
1276
    print("auto gen op")
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1290
        op_compat_yaml_file,
1291 1292 1293 1294 1295
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )