op_gen.py 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else

32
#include "paddle/ir/core/op_base.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

{input}
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
  static void verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes);
{get_inputs_and_outputs}
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

OP_GET_INPUT_TEMPLATE = """  ir::OpOperand {input_name}() {{ return operation()->GetOperandByIndex({input_index}); }}
"""
OP_GET_OUTPUT_TEMPLATE = """  ir::OpResult {output_name}() {{ return operation()->GetResultByIndex({output_index}); }}
"""

# =====================================
# String Template for cc file code gen
# =====================================
CC_FILE_TEMPLATE = """#include "{h_file}"
#include "paddle/fluid/dialect/pd_type.h"
#include "paddle/fluid/dialect/pd_attribute.h"
70 71 72
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/ir_context.h"
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
#include "paddle/phi/core/enforce.h"

{input}
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

OP_VERIFY_TEMPLATE = """
void {op_name}::verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
  VLOG(4) << "Verifying inputs, outputs and attributes for: {op_name}.";

  // Verify inputs type:
  PADDLE_ENFORCE_EQ(inputs.size(), {inputs_size},
                    phi::errors::PreconditionNotMet("The size %d of inputs must be equal to {inputs_size}.", inputs.size()));
  {inputs_type_check}
  // Verify outputs type:
  PADDLE_ENFORCE_EQ(outputs.size(), {outputs_size},
                    phi::errors::PreconditionNotMet("The size %d of outputs must be equal to {outputs_size}.", outputs.size()));
  {outputs_type_check}
  // Verify if attributes contain attribute name in attributes_name:
  {attributes_check}
}}
"""

INPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  """
INPUT_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}].type().isa<ir::VectorType>()) {{
    for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    if (inputs[{index}].type().isa<ir::VectorType>()) {{
      for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }}
  """

OUTPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  """
OUTPUT_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}].isa<ir::VectorType>()) {{
    for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    if (outputs[{index}].isa<ir::VectorType>()) {{
      for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }}
  """

ATTRIBUTE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  """
ATTRIBUTE_VECTOR_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").isa<ir::ArrayAttribute>(), true,
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  for (size_t i = 0; i < attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>().size(); i++) {{
    PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>()[i].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  }}
  """


# =====================================
# Parse Op information from Yaml item
# =====================================
class OpInfoParser:
    def __init__(self, op_yaml_item):
        self.op_yaml_item = op_yaml_item
        self.op_phi_name = self.parse_op_phi_name()

        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )

        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
        self.output_optional_list = self.parse_output_optional_list()
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )

        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
            optional_list.append(input_info['optional'])
        return optional_list

    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
                optional_list.append(output_info['optional'])
            else:
                optional_list.append(False)
        return optional_list

    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

    def parse_attribute_type_list(self):
        attr_types_map = {
            'IntArray': 'paddle::dialect::IntArrayAttribute',
            'Scalar': 'paddle::dialect::ScalarAttribute',
            'Scalar(int)': 'paddle::dialect::ScalarAttribute',
            'Scalar(int64_t)': 'paddle::dialect::ScalarAttribute',
            'Scalar(float)': 'paddle::dialect::ScalarAttribute',
            'Scalar(dobule)': 'paddle::dialect::ScalarAttribute',
            'Scalar[]': 'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
            'int': 'ir::Int32_tAttribute',
            'int32_t': 'ir::Int32_tAttribute',
            'int64_t': 'ir::Int64_tAttribute',
            'long': 'ir::LongAttribute',
            'size_t': 'ir::Size_tAttribute',
            'float': 'ir::FloatAttribute',
            'float[]': 'ir::ArrayAttribute<ir::FloatAttribute>',
            'double': 'ir::DoubleAttribute',
            'bool': 'ir::BoolAttribute',
            'bool[]': 'ir::ArrayAttribute<ir::BoolAttribute>',
            'str': 'ir::StrAttribute',
            'str[]': 'ir::ArrayAttribute<ir::StrAttribute>',
            'Place': 'paddle::dialect::PlaceAttribute',
            'DataLayout': 'paddle::dialect::DataLayoutAttribute',
            'DataType': 'paddle::dialect::DataTypeAttribute',
            'int64_t[]': 'ir::ArrayAttribute<ir::Int64_tAttribute>',
            'int[]': 'ir::ArrayAttribute<ir::Int32_tAttribute>',
        }
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in attr_types_map
            ), f"{self.op_phi_name} : Attr type error."
            type_list.append(attr_types_map[attribute_info['typename']])
        return type_list

    def parse_op_phi_name(self):
        return self.op_yaml_item['name']


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
# Generate op definition files
# =====================================
def OpGenerator(
    op_yaml_files,
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
        op_info_items.append(OpInfoParser(op))

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
        # get op info
        op_name = op_info.op_phi_name
        op_class_name = to_pascal_case(op_name) + "Op"
        op_dialect_name = dialect_name + "." + op_name
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
        op_output_optional_list = op_info.output_optional_list
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
        op_interfaces = []
        op_traits = []

        # gen interface/trait str
        op_interfaces_str = ""
        if len(op_interfaces) > 0:
            op_interfaces_str = "," + ",".join(op_interfaces)
        op_traits_str = ""
        if len(op_interfaces) > 0:
            op_traits_str = "," + ",".join(op_traits)

        op_get_inputs_outputs_str = ""
        for idx in range(len(op_input_name_list)):
            op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                input_name=op_input_name_list[idx], input_index=idx
            )
        for idx in range(len(op_output_name_list)):
            op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format(
                output_name=op_output_name_list[idx], output_index=idx
            )

        # gen op_declare_str/op_defined_str
        if len(op_attribute_name_list) == 0:
            op_declare_str = OP_DECLARE_TEMPLATE.format(
                op_name=op_class_name,
                dialect_op_name=op_dialect_name,
                interfaces=op_interfaces_str,
                traits=op_traits_str,
                attribute_declare=op_0_attribute_declare_str,
                attribute_num=0,
                get_inputs_and_outputs=op_get_inputs_outputs_str,
            )
            op_defined_str = ""
        else:
            op_declare_str = OP_DECLARE_TEMPLATE.format(
                op_name=op_class_name,
                dialect_op_name=op_dialect_name,
                interfaces=op_interfaces_str,
                traits=op_traits_str,
                attribute_declare=op_n_attribute_declare_str.format(
                    attribute_num=len(op_attribute_name_list)
                ),
                attribute_num=len(op_attribute_name_list),
                get_inputs_and_outputs=op_get_inputs_outputs_str,
            )
            attribute_names_str = (
                '"' + '", "'.join(op_attribute_name_list) + '"'
            )
            op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                op_name=op_class_name,
                attribute_num=len(op_attribute_name_list),
                attribute_names=attribute_names_str,
            )

        # generate op verify function: inputs_type_check_str
        if len(op_input_type_list) == 0:
            inputs_type_check_str = (
                "// Inputs num is 0, not need to check inputs type."
            )
        else:
            inputs_type_check_str = ""
        for idx in range(len(op_input_type_list)):
            input_type = op_input_type_list[idx]
            is_optional = op_input_optional_list[idx]
            is_vector = False
            if input_type.startswith("ir::VectorType<"):
                is_vector = True
                input_type = input_type[15:-1]
            check_str = ""
            if is_optional:
                if is_vector:
                    check_str = INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=input_type
                    )
                else:
                    check_str = INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=input_type
                    )
            else:
                if is_vector:
                    check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=input_type
                    )
                else:
                    check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=input_type
                    )
            inputs_type_check_str += check_str

        # generate op verify function: outputs_type_check_str
        if len(op_output_type_list) == 0:
            outputs_type_check_str = (
                "// Outputs num is 0, not need to check outputs type."
            )
        else:
            outputs_type_check_str = ""
        for idx in range(len(op_output_type_list)):
            output_type = op_output_type_list[idx]
            is_optional = op_output_optional_list[idx]
            is_vector = False
            if output_type.startswith("ir::VectorType<"):
                is_vector = True
                output_type = output_type[15:-1]
            check_str = ""
            if is_optional:
                if is_vector:
                    check_str = (
                        OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                    )
                else:
                    check_str = OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=output_type
                    )
            else:
                if is_vector:
                    check_str = OUTPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=output_type
                    )
                else:
                    check_str = OUTPUT_TYPE_CHECK_TEMPLATE.format(
                        index=idx, standard=output_type
                    )
            outputs_type_check_str += check_str

        # generate op verify function: attributes_check_str
        if len(op_attribute_name_list) == 0:
            attributes_check_str = (
                "// Attributes num is 0, not need to check attributes type."
            )
        else:
            attributes_check_str = ""
        for idx in range(len(op_attribute_name_list)):
            attribute_name = op_attribute_name_list[idx]
            attribute_type = op_attribute_type_list[idx]
            if attribute_type.startswith("ir::ArrayAttribute<"):
                attribute_type = attribute_type[19:-1]
                attributes_check_str += ATTRIBUTE_VECTOR_CHECK_TEMPLATE.format(
                    attribute_name=attribute_name, standard=attribute_type
                )
            else:
                attributes_check_str += ATTRIBUTE_CHECK_TEMPLATE.format(
                    attribute_name=attribute_name, standard=attribute_type
                )

        # generate op verify function
        op_verify_str = OP_VERIFY_TEMPLATE.format(
            op_name=op_class_name,
            inputs_size=len(op_input_type_list),
            outputs_size=len(op_output_type_list),
            inputs_type_check=inputs_type_check_str,
            outputs_type_check=outputs_type_check_str,
            attributes_check=attributes_check_str,
        )

        ops_name_list.append(op_class_name)
        ops_declare_list.append(op_declare_str)
        ops_defined_list.append(op_defined_str)
        ops_defined_list.append(op_verify_str)

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
        op_declare=op_list_str, input=head_file_str
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
    source_file_str = CC_FILE_TEMPLATE.format(
        h_file=op_def_h_file, input=source_file_str
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )