op_gen.py 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else

32 33
#include <vector>

34
#include "paddle/ir/core/op_base.h"
35 36
#include "paddle/fluid/dialect/utils.h"
#include "paddle/fluid/dialect/pd_interface.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

{input}
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
52
  static OpInfoTuple GetOpInfo();
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  static void verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes);
{get_inputs_and_outputs}
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

OP_GET_INPUT_TEMPLATE = """  ir::OpOperand {input_name}() {{ return operation()->GetOperandByIndex({input_index}); }}
"""
OP_GET_OUTPUT_TEMPLATE = """  ir::OpResult {output_name}() {{ return operation()->GetResultByIndex({output_index}); }}
"""

# =====================================
# String Template for cc file code gen
# =====================================
CC_FILE_TEMPLATE = """#include "{h_file}"
#include "paddle/fluid/dialect/pd_type.h"
#include "paddle/fluid/dialect/pd_attribute.h"
75 76 77
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
#include "paddle/ir/core/ir_context.h"
78 79 80 81 82 83 84 85 86
#include "paddle/phi/core/enforce.h"

{input}
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
# get op input info
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
    std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
    std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
    std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
    return std::make_tuple(inputs, attributes, outputs);
}}
"""

OP_INPUT_INFO_TEMPLATE = """
std::vector<paddle::dialect::OpInputInfo> {op_name}::inputs_info() {{
  return {{ {impl} }};
}}
"""
CONSTRUCT_INPUT_INFO_TEMPLATE = (
    """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer})"""
)

# get op output info
OP_OUTPUT_INFO_TEMPLATE = """
std::vector<paddle::dialect::OpOutputInfo> {op_name}::outputs_info() {{
  return {{ {impl} }};
}}
"""
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)

# get op attribute info
OP_ATTRIBUTE_INFO_TEMPLATE = """
std::vector<paddle::dialect::OpAttributeInfo> {op_name}::attributes_info() {{
  return {{ {impl} }};
}}
"""
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

# verify
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
OP_VERIFY_TEMPLATE = """
void {op_name}::verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
  VLOG(4) << "Verifying inputs, outputs and attributes for: {op_name}.";

  // Verify inputs type:
  PADDLE_ENFORCE_EQ(inputs.size(), {inputs_size},
                    phi::errors::PreconditionNotMet("The size %d of inputs must be equal to {inputs_size}.", inputs.size()));
  {inputs_type_check}
  // Verify outputs type:
  PADDLE_ENFORCE_EQ(outputs.size(), {outputs_size},
                    phi::errors::PreconditionNotMet("The size %d of outputs must be equal to {outputs_size}.", outputs.size()));
  {outputs_type_check}
  // Verify if attributes contain attribute name in attributes_name:
  {attributes_check}
}}
"""

INPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  """
INPUT_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}].type().isa<ir::VectorType>()) {{
    for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    if (inputs[{index}].type().isa<ir::VectorType>()) {{
      for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }}
  """

OUTPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  """
OUTPUT_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}].isa<ir::VectorType>()) {{
    for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    if (outputs[{index}].isa<ir::VectorType>()) {{
      for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }}
  """

206 207 208
ATTRIBUTE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0, true,
                    phi::errors::PreconditionNotMet("The AttributeMap miss mandatory attributes of: {attribute_name}."));
  PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").isa<{standard}>(), true,
209 210
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  """
211 212 213
ATTRIBUTE_VECTOR_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0, true,
                    phi::errors::PreconditionNotMet("The AttributeMap miss mandatory attributes of: {attribute_name}."));
  PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").isa<ir::ArrayAttribute>(), true,
214 215 216 217 218 219 220 221
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  for (size_t i = 0; i < attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>().size(); i++) {{
    PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>()[i].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  }}
  """


222 223 224 225 226 227 228 229 230 231 232 233
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


234
# =====================================
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
            phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op'])
            if op_name == phi_name:
                return compat
        return None


# =====================================
# Parse Op Information From Yaml
253 254
# =====================================
class OpInfoParser:
255
    def __init__(self, op_yaml_item, op_compat_item):
256
        self.op_yaml_item = op_yaml_item
257
        self.op_compat_item = op_compat_item
258
        self.op_phi_name = self.parse_op_phi_name()
259
        # parse inputs
260 261 262
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
263
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
264 265 266
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
267
        # parse outputs
268 269 270
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
        self.output_optional_list = self.parse_output_optional_list()
271
        self.output_intermediate_list = self.parse_output_intermediate_list()
272 273 274 275 276
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
277
        # parse attributes
278 279
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
280
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
314 315 316 317
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
318 319
        return optional_list

320 321 322 323 324 325 326 327 328
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
352 353 354 355
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
356
            else:
357
                optional_list.append("false")
358 359
        return optional_list

360 361 362 363 364 365 366 367 368 369 370 371
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

    def parse_attribute_type_list(self):
        attr_types_map = {
            'IntArray': 'paddle::dialect::IntArrayAttribute',
            'Scalar': 'paddle::dialect::ScalarAttribute',
            'Scalar(int)': 'paddle::dialect::ScalarAttribute',
            'Scalar(int64_t)': 'paddle::dialect::ScalarAttribute',
            'Scalar(float)': 'paddle::dialect::ScalarAttribute',
            'Scalar(dobule)': 'paddle::dialect::ScalarAttribute',
            'Scalar[]': 'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
            'int': 'ir::Int32_tAttribute',
            'int32_t': 'ir::Int32_tAttribute',
            'int64_t': 'ir::Int64_tAttribute',
            'long': 'ir::LongAttribute',
            'size_t': 'ir::Size_tAttribute',
            'float': 'ir::FloatAttribute',
            'float[]': 'ir::ArrayAttribute<ir::FloatAttribute>',
            'double': 'ir::DoubleAttribute',
            'bool': 'ir::BoolAttribute',
            'bool[]': 'ir::ArrayAttribute<ir::BoolAttribute>',
            'str': 'ir::StrAttribute',
            'str[]': 'ir::ArrayAttribute<ir::StrAttribute>',
            'Place': 'paddle::dialect::PlaceAttribute',
            'DataLayout': 'paddle::dialect::DataLayoutAttribute',
            'DataType': 'paddle::dialect::DataTypeAttribute',
            'int64_t[]': 'ir::ArrayAttribute<ir::Int64_tAttribute>',
            'int[]': 'ir::ArrayAttribute<ir::Int32_tAttribute>',
        }
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in attr_types_map
            ), f"{self.op_phi_name} : Attr type error."
            type_list.append(attr_types_map[attribute_info['typename']])
        return type_list

413 414 415 416 417 418 419 420 421
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

422
    def parse_op_phi_name(self):
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
        if self.parse_op_inplace_info() is None:
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None
438 439 440 441 442 443 444 445 446 447 448


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
449
# Generate Op Definition Files
450 451 452
# =====================================
def OpGenerator(
    op_yaml_files,
453
    op_compat_yaml_file,
454 455 456 457 458 459 460 461 462 463 464 465
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
466 467
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

468 469 470 471 472 473 474
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
475 476 477
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
478 479 480 481 482 483 484 485 486 487

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
        # get op info
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
488
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
489 490 491
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
        op_output_optional_list = op_info.output_optional_list
492
        op_output_intermediate_list = op_info.output_intermediate_list
493 494
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
495 496
        op_attribute_data_type_list = op_info.attribute_data_type_list
        op_interfaces = ["GetOpInfoInterface"]
497 498
        op_traits = []

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

            # gen interface/trait str
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

            op_get_inputs_outputs_str = ""
            for idx in range(len(op_input_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_input_name_list[idx],
                    input_index=idx,
                )
            for idx in range(len(op_output_name_list)):
                op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format(
                    output_name=op_output_name_list[idx],
                    output_index=idx,
                )
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
            # gen op_declare_str/op_defined_str
            if len(op_attribute_name_list) == 0:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
                        attribute_num=len(op_attribute_name_list)
                    ),
                    attribute_num=len(op_attribute_name_list),
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
                )
                attribute_names_str = (
                    '"' + '", "'.join(op_attribute_name_list) + '"'
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
                    attribute_num=len(op_attribute_name_list),
                    attribute_names=attribute_names_str,
                )
556

557 558 559 560 561 562 563 564 565 566 567 568
            # generate get op info funciton: inputs
            inputs_info_str = ""
            if len(op_input_name_list) > 0:
                input_info_list = []
                for idx in range(len(op_input_name_list)):
                    input_info_list.append(
                        CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                            name=op_input_name_list[idx],
                            typename=op_input_type_list[idx],
                            optional=op_input_optional_list[idx],
                            no_need_buffer=op_input_no_need_buffer_list[idx],
                        )
569
                    )
570 571 572 573 574 575 576 577 578 579 580 581 582 583
                inputs_info_str = ", ".join(input_info_list)

            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
584
                    )
585 586 587 588 589 590 591 592 593 594 595 596 597
                outputs_info_str = ", ".join(output_info_list)

            # generate get op info funciton: attributes
            attribute_info_str = ""
            if len(op_attribute_name_list) > 0:
                attribute_info_list = []
                for idx in range(len(op_attribute_name_list)):
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
                            name=op_attribute_name_list[idx],
                            typename=op_attribute_type_list[idx],
                            data_type=op_attribute_data_type_list[idx],
                        )
598
                    )
599
                attribute_info_str = ", ".join(attribute_info_list)
600

601 602 603 604 605
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
606
            )
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

            # generate op verify function: inputs_type_check_str
            if len(op_input_type_list) == 0:
                inputs_type_check_str = (
                    "// Inputs num is 0, not need to check inputs type."
                )
            else:
                inputs_type_check_str = ""
            for idx in range(len(op_input_type_list)):
                input_type = op_input_type_list[idx]
                is_optional = op_input_optional_list[idx]
                is_vector = False
                if input_type.startswith("ir::VectorType<"):
                    is_vector = True
                    input_type = input_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=input_type
                            )
                        )
                    else:
                        check_str = INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                else:
                    if is_vector:
                        check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                    else:
                        check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                inputs_type_check_str += check_str

            # generate op verify function: outputs_type_check_str
            if len(op_output_type_list) == 0:
                outputs_type_check_str = (
                    "// Outputs num is 0, not need to check outputs type."
                )
            else:
                outputs_type_check_str = ""
            for idx in range(len(op_output_type_list)):
                output_type = op_output_type_list[idx]
                is_optional = op_output_optional_list[idx]
                is_vector = False
                if output_type.startswith("ir::VectorType<"):
                    is_vector = True
                    output_type = output_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=output_type
                            )
                        )
                    else:
                        check_str = OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
669 670 671
                            index=idx, standard=output_type
                        )
                else:
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
                    if is_vector:
                        check_str = OUTPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                    else:
                        check_str = OUTPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                outputs_type_check_str += check_str

            # generate op verify function: attributes_check_str
            if len(op_attribute_name_list) == 0:
                attributes_check_str = (
                    "// Attributes num is 0, not need to check attributes type."
                )
687
            else:
688 689 690 691 692 693 694 695 696 697 698
                attributes_check_str = ""
            for idx in range(len(op_attribute_name_list)):
                attribute_name = op_attribute_name_list[idx]
                attribute_type = op_attribute_type_list[idx]
                if attribute_type.startswith("ir::ArrayAttribute<"):
                    attribute_type = attribute_type[19:-1]
                    attributes_check_str += (
                        ATTRIBUTE_VECTOR_CHECK_TEMPLATE.format(
                            attribute_name=attribute_name,
                            standard=attribute_type,
                        )
699 700
                    )
                else:
701 702
                    attributes_check_str += ATTRIBUTE_CHECK_TEMPLATE.format(
                        attribute_name=attribute_name, standard=attribute_type
703 704
                    )

705 706 707 708 709 710 711 712
            # generate op verify function
            op_verify_str = OP_VERIFY_TEMPLATE.format(
                op_name=op_class_name,
                inputs_size=len(op_input_type_list),
                outputs_size=len(op_output_type_list),
                inputs_type_check=inputs_type_check_str,
                outputs_type_check=outputs_type_check_str,
                attributes_check=attributes_check_str,
713 714
            )

715 716 717 718 719
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
            ops_defined_list.append(op_verify_str)
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
        op_declare=op_list_str, input=head_file_str
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
    source_file_str = CC_FILE_TEMPLATE.format(
        h_file=op_def_h_file, input=source_file_str
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
792
        op_compat_yaml_file,
793 794 795 796 797
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )