test_fmin_op.py 8.5 KB
Newer Older
L
LJQ❤️ 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

L
LJQ❤️ 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest
19

L
LJQ❤️ 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
import paddle
import paddle.fluid.core as core

paddle.enable_static()


class ApiFMinTest(unittest.TestCase):
    """ApiFMinTest"""

    def setUp(self):
        """setUp"""
        if core.is_compiled_with_cuda():
            self.place = core.CUDAPlace(0)
        else:
            self.place = core.CPUPlace()

        self.input_x = np.random.rand(10, 15).astype("float32")
        self.input_y = np.random.rand(10, 15).astype("float32")
        self.input_z = np.random.rand(15).astype("float32")
        self.input_a = np.array([0, np.nan, np.nan]).astype('int64')
        self.input_b = np.array([2, np.inf, -np.inf]).astype('int64')
        self.input_c = np.array([4, 1, 3]).astype('int64')

        self.np_expected1 = np.fmin(self.input_x, self.input_y)
        self.np_expected2 = np.fmin(self.input_x, self.input_z)
        self.np_expected3 = np.fmin(self.input_a, self.input_c)
        self.np_expected4 = np.fmin(self.input_b, self.input_c)

    def test_static_api(self):
        """test_static_api"""
        paddle.enable_static()
51 52 53
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
54 55 56 57
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_y)
            exe = paddle.static.Executor(self.place)
58 59 60 61
            (res,) = exe.run(
                feed={"x": self.input_x, "y": self.input_y},
                fetch_list=[result_fmin],
            )
62
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
63

64 65 66
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
67 68 69 70
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_z = paddle.static.data("z", shape=[15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_z)
            exe = paddle.static.Executor(self.place)
71 72 73 74
            (res,) = exe.run(
                feed={"x": self.input_x, "z": self.input_z},
                fetch_list=[result_fmin],
            )
75
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
76

77 78 79
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
80 81 82 83
            data_a = paddle.static.data("a", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_a, data_c)
            exe = paddle.static.Executor(self.place)
84 85 86 87
            (res,) = exe.run(
                feed={"a": self.input_a, "c": self.input_c},
                fetch_list=[result_fmin],
            )
88
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
89

90 91 92
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
93 94 95 96
            data_b = paddle.static.data("b", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_b, data_c)
            exe = paddle.static.Executor(self.place)
97 98 99 100
            (res,) = exe.run(
                feed={"b": self.input_b, "c": self.input_c},
                fetch_list=[result_fmin],
            )
101
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def test_dynamic_api(self):
        """test_dynamic_api"""
        paddle.disable_static()
        x = paddle.to_tensor(self.input_x)
        y = paddle.to_tensor(self.input_y)
        z = paddle.to_tensor(self.input_z)

        a = paddle.to_tensor(self.input_a)
        b = paddle.to_tensor(self.input_b)
        c = paddle.to_tensor(self.input_c)

        res = paddle.fmin(x, y)
        res = res.numpy()
116
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
117 118 119 120

        # test broadcast
        res = paddle.fmin(x, z)
        res = res.numpy()
121
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
122 123 124

        res = paddle.fmin(a, c)
        res = res.numpy()
125
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
126 127 128

        res = paddle.fmin(b, c)
        res = res.numpy()
129
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
130 131 132 133 134 135 136 137


class TestElementwiseFminOp(OpTest):
    """TestElementwiseFminOp"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
138
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
139 140 141 142 143 144 145 146 147 148 149
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
W
wanghuancoder 已提交
150
        self.check_output()
L
LJQ❤️ 已提交
151 152 153

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
W
wanghuancoder 已提交
154
        self.check_grad(['X', 'Y'], 'Out')
L
LJQ❤️ 已提交
155 156 157

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
158 159 160 161 162 163
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
        )
L
LJQ❤️ 已提交
164 165 166

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
167 168 169 170 171 172
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
        )
L
LJQ❤️ 已提交
173 174 175 176 177 178 179 180


class TestElementwiseFmin2Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
181
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")

        y[2, 10:] = np.nan
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
W
wanghuancoder 已提交
195
        self.check_output()
L
LJQ❤️ 已提交
196 197 198

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
W
wanghuancoder 已提交
199
        self.check_grad(['X', 'Y'], 'Out')
L
LJQ❤️ 已提交
200 201 202

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
203 204 205 206 207 208
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
        )
L
LJQ❤️ 已提交
209 210 211

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
212 213 214 215 216 217
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
        )
H
hong 已提交
218 219


220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
class TestElementwiseFmin3Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
        self.python_api = paddle.fmin
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(1, 1, [13, 17]).astype("float16")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float16")
        y = x + sgn * np.random.uniform(1, 1, [13, 17]).astype("float16")

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
W
wanghuancoder 已提交
239
        self.check_output()
240 241 242

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
W
wanghuancoder 已提交
243
        self.check_grad(['X', 'Y'], 'Out')
244 245


H
hong 已提交
246 247 248
if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()