test_fmin_op.py 8.8 KB
Newer Older
L
LJQ❤️ 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from op_test import OpTest

paddle.enable_static()


class ApiFMinTest(unittest.TestCase):
    """ApiFMinTest"""

    def setUp(self):
        """setUp"""
        if core.is_compiled_with_cuda():
            self.place = core.CUDAPlace(0)
        else:
            self.place = core.CPUPlace()

        self.input_x = np.random.rand(10, 15).astype("float32")
        self.input_y = np.random.rand(10, 15).astype("float32")
        self.input_z = np.random.rand(15).astype("float32")
        self.input_a = np.array([0, np.nan, np.nan]).astype('int64')
        self.input_b = np.array([2, np.inf, -np.inf]).astype('int64')
        self.input_c = np.array([4, 1, 3]).astype('int64')

        self.np_expected1 = np.fmin(self.input_x, self.input_y)
        self.np_expected2 = np.fmin(self.input_x, self.input_z)
        self.np_expected3 = np.fmin(self.input_a, self.input_c)
        self.np_expected4 = np.fmin(self.input_b, self.input_c)

    def test_static_api(self):
        """test_static_api"""
        paddle.enable_static()
49 50 51
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
52 53 54 55
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_y)
            exe = paddle.static.Executor(self.place)
56 57 58 59
            (res,) = exe.run(
                feed={"x": self.input_x, "y": self.input_y},
                fetch_list=[result_fmin],
            )
60
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
61

62 63 64
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
65 66 67 68
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_z = paddle.static.data("z", shape=[15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_z)
            exe = paddle.static.Executor(self.place)
69 70 71 72
            (res,) = exe.run(
                feed={"x": self.input_x, "z": self.input_z},
                fetch_list=[result_fmin],
            )
73
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
74

75 76 77
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
78 79 80 81
            data_a = paddle.static.data("a", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_a, data_c)
            exe = paddle.static.Executor(self.place)
82 83 84 85
            (res,) = exe.run(
                feed={"a": self.input_a, "c": self.input_c},
                fetch_list=[result_fmin],
            )
86
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
87

88 89 90
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
91 92 93 94
            data_b = paddle.static.data("b", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_b, data_c)
            exe = paddle.static.Executor(self.place)
95 96 97 98
            (res,) = exe.run(
                feed={"b": self.input_b, "c": self.input_c},
                fetch_list=[result_fmin],
            )
99
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113

    def test_dynamic_api(self):
        """test_dynamic_api"""
        paddle.disable_static()
        x = paddle.to_tensor(self.input_x)
        y = paddle.to_tensor(self.input_y)
        z = paddle.to_tensor(self.input_z)

        a = paddle.to_tensor(self.input_a)
        b = paddle.to_tensor(self.input_b)
        c = paddle.to_tensor(self.input_c)

        res = paddle.fmin(x, y)
        res = res.numpy()
114
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
115 116 117 118

        # test broadcast
        res = paddle.fmin(x, z)
        res = res.numpy()
119
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
120 121 122

        res = paddle.fmin(a, c)
        res = res.numpy()
123
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
124 125 126

        res = paddle.fmin(b, c)
        res = res.numpy()
127
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
128 129 130 131 132 133 134 135


class TestElementwiseFminOp(OpTest):
    """TestElementwiseFminOp"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
136
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
137 138 139 140 141 142 143 144 145 146 147
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
148
        self.check_output(check_eager=True)
L
LJQ❤️ 已提交
149 150 151

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
152
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
LJQ❤️ 已提交
153 154 155

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
156 157 158 159 160 161 162
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
            check_eager=True,
        )
L
LJQ❤️ 已提交
163 164 165

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
166 167 168 169 170 171 172
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
            check_eager=True,
        )
L
LJQ❤️ 已提交
173 174 175 176 177 178 179 180


class TestElementwiseFmin2Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
181
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")

        y[2, 10:] = np.nan
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
195
        self.check_output(check_eager=True)
L
LJQ❤️ 已提交
196 197 198

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
199
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
LJQ❤️ 已提交
200 201 202

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
203 204 205 206 207 208 209
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
            check_eager=True,
        )
L
LJQ❤️ 已提交
210 211 212

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
213 214 215 216 217 218 219
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
            check_eager=True,
        )
H
hong 已提交
220 221


222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
class TestElementwiseFmin3Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
        self.python_api = paddle.fmin
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(1, 1, [13, 17]).astype("float16")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float16")
        y = x + sgn * np.random.uniform(1, 1, [13, 17]).astype("float16")

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
        self.check_output(check_eager=True)

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)


H
hong 已提交
248 249 250
if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()