test_fmin_op.py 8.8 KB
Newer Older
L
LJQ❤️ 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

L
LJQ❤️ 已提交
17
import numpy as np
18 19
from op_test import OpTest

L
LJQ❤️ 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
import paddle
import paddle.fluid.core as core

paddle.enable_static()


class ApiFMinTest(unittest.TestCase):
    """ApiFMinTest"""

    def setUp(self):
        """setUp"""
        if core.is_compiled_with_cuda():
            self.place = core.CUDAPlace(0)
        else:
            self.place = core.CPUPlace()

        self.input_x = np.random.rand(10, 15).astype("float32")
        self.input_y = np.random.rand(10, 15).astype("float32")
        self.input_z = np.random.rand(15).astype("float32")
        self.input_a = np.array([0, np.nan, np.nan]).astype('int64')
        self.input_b = np.array([2, np.inf, -np.inf]).astype('int64')
        self.input_c = np.array([4, 1, 3]).astype('int64')

        self.np_expected1 = np.fmin(self.input_x, self.input_y)
        self.np_expected2 = np.fmin(self.input_x, self.input_z)
        self.np_expected3 = np.fmin(self.input_a, self.input_c)
        self.np_expected4 = np.fmin(self.input_b, self.input_c)

    def test_static_api(self):
        """test_static_api"""
        paddle.enable_static()
51 52 53
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
54 55 56 57
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_y = paddle.static.data("y", shape=[10, 15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_y)
            exe = paddle.static.Executor(self.place)
58 59 60 61
            (res,) = exe.run(
                feed={"x": self.input_x, "y": self.input_y},
                fetch_list=[result_fmin],
            )
62
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
63

64 65 66
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
67 68 69 70
            data_x = paddle.static.data("x", shape=[10, 15], dtype="float32")
            data_z = paddle.static.data("z", shape=[15], dtype="float32")
            result_fmin = paddle.fmin(data_x, data_z)
            exe = paddle.static.Executor(self.place)
71 72 73 74
            (res,) = exe.run(
                feed={"x": self.input_x, "z": self.input_z},
                fetch_list=[result_fmin],
            )
75
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
76

77 78 79
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
80 81 82 83
            data_a = paddle.static.data("a", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_a, data_c)
            exe = paddle.static.Executor(self.place)
84 85 86 87
            (res,) = exe.run(
                feed={"a": self.input_a, "c": self.input_c},
                fetch_list=[result_fmin],
            )
88
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
89

90 91 92
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
L
LJQ❤️ 已提交
93 94 95 96
            data_b = paddle.static.data("b", shape=[3], dtype="int64")
            data_c = paddle.static.data("c", shape=[3], dtype="int64")
            result_fmin = paddle.fmin(data_b, data_c)
            exe = paddle.static.Executor(self.place)
97 98 99 100
            (res,) = exe.run(
                feed={"b": self.input_b, "c": self.input_c},
                fetch_list=[result_fmin],
            )
101
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def test_dynamic_api(self):
        """test_dynamic_api"""
        paddle.disable_static()
        x = paddle.to_tensor(self.input_x)
        y = paddle.to_tensor(self.input_y)
        z = paddle.to_tensor(self.input_z)

        a = paddle.to_tensor(self.input_a)
        b = paddle.to_tensor(self.input_b)
        c = paddle.to_tensor(self.input_c)

        res = paddle.fmin(x, y)
        res = res.numpy()
116
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
L
LJQ❤️ 已提交
117 118 119 120

        # test broadcast
        res = paddle.fmin(x, z)
        res = res.numpy()
121
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
L
LJQ❤️ 已提交
122 123 124

        res = paddle.fmin(a, c)
        res = res.numpy()
125
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
L
LJQ❤️ 已提交
126 127 128

        res = paddle.fmin(b, c)
        res = res.numpy()
129
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
L
LJQ❤️ 已提交
130 131 132 133 134 135 136 137


class TestElementwiseFminOp(OpTest):
    """TestElementwiseFminOp"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
138
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
139 140 141 142 143 144 145 146 147 148 149
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
150
        self.check_output(check_eager=True)
L
LJQ❤️ 已提交
151 152 153

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
154
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
LJQ❤️ 已提交
155 156 157

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
158 159 160 161 162 163 164
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
            check_eager=True,
        )
L
LJQ❤️ 已提交
165 166 167

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
168 169 170 171 172 173 174
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
            check_eager=True,
        )
L
LJQ❤️ 已提交
175 176 177 178 179 180 181 182


class TestElementwiseFmin2Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
183
        self.python_api = paddle.fmin
L
LJQ❤️ 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(0.1, 1, [13, 17]).astype("float64")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float64")
        y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float64")

        y[2, 10:] = np.nan
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
197
        self.check_output(check_eager=True)
L
LJQ❤️ 已提交
198 199 200

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
201
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
L
LJQ❤️ 已提交
202 203 204

    def test_check_grad_ingore_x(self):
        """test_check_grad_ingore_x"""
205 206 207 208 209 210 211
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
            check_eager=True,
        )
L
LJQ❤️ 已提交
212 213 214

    def test_check_grad_ingore_y(self):
        """test_check_grad_ingore_y"""
215 216 217 218 219 220 221
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
            check_eager=True,
        )
H
hong 已提交
222 223


224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
class TestElementwiseFmin3Op(OpTest):
    """TestElementwiseFmin2Op"""

    def setUp(self):
        """setUp"""
        self.op_type = "elementwise_fmin"
        self.python_api = paddle.fmin
        # If x and y have the same value, the min() is not differentiable.
        # So we generate test data by the following method
        # to avoid them being too close to each other.
        x = np.random.uniform(1, 1, [13, 17]).astype("float16")
        sgn = np.random.choice([-1, 1], [13, 17]).astype("float16")
        y = x + sgn * np.random.uniform(1, 1, [13, 17]).astype("float16")

        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.fmin(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        """test_check_output"""
        self.check_output(check_eager=True)

    def test_check_grad_normal(self):
        """test_check_grad_normal"""
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)


H
hong 已提交
250 251 252
if __name__ == "__main__":
    paddle.enable_static()
    unittest.main()