test_conv2d_transpose_op.py 34.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Z
deconv  
zchen0211 已提交
16
import unittest
17

Z
deconv  
zchen0211 已提交
18
import numpy as np
19

K
Kaipeng Deng 已提交
20
import paddle
21
import paddle.nn as nn
22

K
Kaipeng Deng 已提交
23
paddle.enable_static()
W
wanghuancoder 已提交
24
from eager_op_test import OpTest
25 26
from test_attribute_var import UnittestBase

27
import paddle.fluid as fluid
28
import paddle.fluid.core as core
29
from paddle.fluid import Program, program_guard
Z
deconv  
zchen0211 已提交
30 31


C
chengduoZH 已提交
32
def conv2dtranspose_forward_naive(input_, filter_, attrs):
33 34
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
35 36 37 38
        raise ValueError(
            "Unknown Attr(padding_algorithm): '%s'. "
            "It can only be 'SAME' or 'VALID'." % str(padding_algorithm)
        )
39 40 41

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 3, 1, 2])
Z
deconv  
zchen0211 已提交
42
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
43 44
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
45
    assert in_c == f_c
Y
Yibing Liu 已提交
46
    out_c = f_out_c * groups
M
minqiyang 已提交
47
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
48

49 50 51 52 53
    stride, pad, dilations = (
        attrs['strides'],
        attrs['paddings'],
        attrs['dilations'],
    )
54 55 56 57

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
58 59 60
        for input_size, filter_size, stride_size in zip(
            input_shape, kernel_size, kernel_stride
        ):
61
            out_size = int((input_size + stride_size - 1) / stride_size)
62
            pad_sum = np.max(
63 64
                ((out_size - 1) * stride_size + filter_size - input_size, 0)
            )
65 66 67 68 69 70 71 72 73 74
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
75 76
        dilations = [1, 1]
        input_data_shape = input_.shape[2:4]
77 78 79 80 81 82 83 84
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]

C
chengduoZH 已提交
85 86 87 88
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
89 90
    if 'output_size' in attrs:
        output_size = attrs['output_size']
91 92
        out_h = output_size[0] + pad_h_0 + pad_h_1
        out_w = output_size[1] + pad_w_0 + pad_w_1
L
LielinJiang 已提交
93 94 95 96 97
    out_pad_h = 0
    out_pad_w = 0
    if 'output_padding' in attrs:
        out_pad_h = attrs['output_padding'][0]
        out_pad_w = attrs['output_padding'][1]
98 99 100
    out = np.zeros(
        (in_n, out_c, out_h + out_pad_h, out_w + out_pad_w), dtype=input_.dtype
    )
Z
deconv  
zchen0211 已提交
101 102 103 104

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
105
                for g in range(groups):
106 107 108
                    input_masked = input_[
                        n, g * sub_in_c : (g + 1) * sub_in_c, i, j
                    ]  # (c)
Y
Yibing Liu 已提交
109 110 111 112 113
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
114 115 116 117 118 119
                            input_masked
                            * filter_[
                                g * sub_in_c : (g + 1) * sub_in_c, k, :, :
                            ],
                            axis=0,
                        )
Y
Yibing Liu 已提交
120
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
121
                        j1, j2 = j * stride[1], j * stride[1] + d_bolck_w
122 123 124 125 126 127 128 129 130 131 132 133 134
                        out[
                            n,
                            g * f_out_c + k,
                            i1 : i2 : dilations[0],
                            j1 : j2 : dilations[1],
                        ] += tmp_out

    out = out[
        :,
        :,
        pad_h_0 : out_h - pad_h_1 + out_pad_h,
        pad_w_0 : out_w - pad_w_1 + out_pad_w,
    ]
135 136
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 1])
Z
deconv  
zchen0211 已提交
137 138 139
    return out


W
wanghuancoder 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
def conv2dtranspose_wrapper(
    x,
    weight,
    stride=1,
    padding=0,
    output_padding=[],
    output_size=[],
    padding_algorithm="EXPLICIT",
    groups=1,
    dilation=1,
    data_format="NCDHW",
):
    if data_format == "AnyLayout":
        data_format = "NCDHW"
    if padding_algorithm is None:
        padding_algorithm = "EXPLICIT"
    return paddle._C_ops.conv2d_transpose(
        x,
        weight,
        stride,
        padding,
        output_padding,
        output_size,
        padding_algorithm,
        groups,
        dilation,
        data_format,
    )


C
cnn 已提交
170
class TestConv2DTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
171
    def setUp(self):
Z
zchen0211 已提交
172
        # init as conv transpose
173
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
174
        self.need_check_grad = True
J
Jacek Czaja 已提交
175
        self.is_test = False
176
        self.use_cudnn = False
J
Jacek Czaja 已提交
177
        self.use_mkldnn = False
178
        self.output_size = None
L
LielinJiang 已提交
179
        self.output_padding = []
180 181 182
        self.data_format = "NCHW"
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"
Z
deconv  
zchen0211 已提交
183 184 185
        self.init_op_type()
        self.init_test_case()

186 187
        input_ = np.random.random(self.input_size).astype(self.dtype)
        filter_ = np.random.random(self.filter_size).astype(self.dtype)
Z
deconv  
zchen0211 已提交
188 189 190 191 192

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
193
            'padding_algorithm': self.padding_algorithm,
Y
Yibing Liu 已提交
194
            'groups': self.groups,
195 196
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
J
Jacek Czaja 已提交
197 198
            'is_test': self.is_test,
            'use_mkldnn': self.use_mkldnn,
199
            'data_format': self.data_format,
Z
deconv  
zchen0211 已提交
200
        }
201 202
        if self.output_size is not None:
            self.attrs['output_size'] = self.output_size
C
chengduoZH 已提交
203

L
LielinJiang 已提交
204 205 206
        if len(self.output_padding) > 0:
            self.attrs['output_padding'] = self.output_padding

207 208 209
        output = conv2dtranspose_forward_naive(
            input_, filter_, self.attrs
        ).astype(self.dtype)
C
chengduoZH 已提交
210

Z
deconv  
zchen0211 已提交
211 212 213
        self.outputs = {'Output': output}

    def test_check_output(self):
214
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
215 216
        if self.use_cudnn:
            place = core.CUDAPlace(0)
217
            self.check_output_with_place(
218
                place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
219
            )
220
        else:
221
            self.check_output(check_dygraph=(not self.use_mkldnn))
Z
deconv  
zchen0211 已提交
222

Z
zchen0211 已提交
223
    def test_check_grad_no_input(self):
224 225 226
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
227 228 229 230 231 232 233
                self.check_grad_with_place(
                    place,
                    ['Filter'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Input']),
                )
234
            else:
235 236 237
                self.check_grad(
                    ['Filter'], 'Output', no_grad_set=set(['Input'])
                )
Z
zchen0211 已提交
238 239

    def test_check_grad_no_filter(self):
240 241 242
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
243 244 245
                self.check_grad_with_place(
                    place, ['Input'], 'Output', no_grad_set=set(['Filter'])
                )
246
            else:
247 248 249
                self.check_grad(
                    ['Input'], 'Output', no_grad_set=set(['Filter'])
                )
Z
deconv  
zchen0211 已提交
250

Z
zchen0211 已提交
251
    def test_check_grad(self):
252 253 254
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
255 256 257 258 259 260
                self.check_grad_with_place(
                    place,
                    set(['Input', 'Filter']),
                    'Output',
                    max_relative_error=0.02,
                )
261
            else:
262 263 264
                self.check_grad(
                    set(['Input', 'Filter']), 'Output', max_relative_error=0.02
                )
C
chengduoZH 已提交
265 266 267 268 269

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
270
        self.groups = 1
C
chengduoZH 已提交
271 272 273 274 275 276
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
277
        self.python_api = conv2dtranspose_wrapper
Z
deconv  
zchen0211 已提交
278

Z
zchen0211 已提交
279

C
cnn 已提交
280
class TestWithSymmetricPad(TestConv2DTransposeOp):
C
chengduoZH 已提交
281 282 283 284
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
285
        self.groups = 1
C
chengduoZH 已提交
286 287 288 289 290
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
291
class TestWithAsymmetricPad(TestConv2DTransposeOp):
292 293 294 295 296 297 298 299 300 301
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
302
class TestWithSAMEPad(TestConv2DTransposeOp):
303
    def init_test_case(self):
304 305
        self.stride = [2, 1]
        self.dilations = [1, 2]
306
        self.groups = 1
307
        self.input_size = [2, 3, 6, 5]  # NCHW
308
        f_c = self.input_size[1]
309
        self.filter_size = [f_c, 6, 4, 3]
310 311 312
        self.padding_algorithm = 'SAME'


C
cnn 已提交
313
class TestWithVALIDPad(TestConv2DTransposeOp):
314 315 316 317 318 319 320 321 322 323
    def init_test_case(self):
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]
        self.padding_algorithm = 'VALID'


C
cnn 已提交
324
class TestWithGroups(TestConv2DTransposeOp):
Y
Yibing Liu 已提交
325 326 327 328 329 330 331 332 333 334
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
cnn 已提交
335
class TestWithStride(TestConv2DTransposeOp):
C
chengduoZH 已提交
336 337 338 339
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
340
        self.groups = 1
C
chengduoZH 已提交
341 342 343 344 345
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
346
class TestWithDilation(TestConv2DTransposeOp):
C
chengduoZH 已提交
347 348 349
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
350
        self.groups = 1
C
chengduoZH 已提交
351 352 353 354 355 356
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
357
class TestWithEvenUpsample(TestConv2DTransposeOp):
358 359 360 361 362 363 364 365 366 367 368
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
369
class TestWithEvenUpsampleOutputPadding(TestConv2DTransposeOp):
L
LielinJiang 已提交
370 371 372 373 374 375 376 377 378 379 380
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
381
class Test_NHWC(TestConv2DTransposeOp):
382 383 384 385 386 387 388 389 390 391 392
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
393
class TestWithSymmetricPad_NHWC(TestConv2DTransposeOp):
394 395 396 397 398 399 400 401 402 403 404
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
405
class TestWithAsymmetricPad_NHWC(TestConv2DTransposeOp):
406 407 408 409 410 411 412 413 414 415 416
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
417
class TestWithGroups_NHWC(TestConv2DTransposeOp):
418 419 420 421 422 423 424 425 426 427 428
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
429
class TestWithStride_NHWC(TestConv2DTransposeOp):
430 431 432 433 434 435 436 437 438 439 440
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
441
class TestWithDilation_NHWC(TestConv2DTransposeOp):
442 443 444 445 446 447 448 449 450 451 452
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [2, 2]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
453
class TestWithEvenUpsample_NHWC(TestConv2DTransposeOp):
454 455 456 457 458 459 460 461 462 463 464 465
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
cnn 已提交
466
class TestWithEvenUpsample_NHWC_output_padding(TestConv2DTransposeOp):
L
LielinJiang 已提交
467 468 469 470 471 472 473 474 475 476 477 478
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
479
# ------------ test_cudnn ------------
480 481 482
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
483
class TestCUDNN(TestConv2DTransposeOp):
Z
deconv  
zchen0211 已提交
484
    def init_op_type(self):
485 486
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
487
        self.python_api = conv2dtranspose_wrapper
Z
zchen0211 已提交
488

Z
deconv  
zchen0211 已提交
489

490 491 492
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
493
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
494 495 496
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
497
        self.groups = 1
C
chengduoZH 已提交
498 499 500 501 502 503
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
504 505
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
506
        self.python_api = conv2dtranspose_wrapper
C
chengduoZH 已提交
507 508


509 510 511
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
512 513 514 515 516 517 518 519 520 521 522 523 524
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
525
        self.python_api = conv2dtranspose_wrapper
526 527


528 529 530
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
531 532 533
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
534
        self.stride = [1, 2]
535 536 537 538 539 540 541 542 543
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
544
        self.python_api = conv2dtranspose_wrapper
545 546


547 548 549
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
550 551 552 553 554 555 556 557 558 559 560 561 562
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
563
        self.python_api = conv2dtranspose_wrapper
564 565


566 567 568
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
569
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
570 571 572
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
573
        self.groups = 1
C
chengduoZH 已提交
574 575 576 577 578 579
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
580 581
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
582
        self.python_api = conv2dtranspose_wrapper
C
chengduoZH 已提交
583 584


585 586 587
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
588 589 590 591 592 593 594 595 596 597 598 599 600
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
601
        self.python_api = conv2dtranspose_wrapper
602 603


604
# ------------ test_cudnn ------------
605 606 607
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
608 609 610 611
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
612
        self.python_api = conv2dtranspose_wrapper
613 614


615 616
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
617
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
618 619 620 621 622 623 624 625 626
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
627
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
628

629

630 631 632
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
633
class TestCUDNN_NHWC(TestConv2DTransposeOp):
634 635 636 637 638 639 640 641 642 643 644 645 646
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
647
        self.python_api = conv2dtranspose_wrapper
648 649


650 651 652
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
653 654 655 656 657 658 659 660 661 662 663 664 665 666
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
667
        self.python_api = conv2dtranspose_wrapper
668 669


670 671 672
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
673 674 675 676 677 678 679 680 681 682 683 684 685 686
class TestCUDNNWithAsymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
687
        self.python_api = conv2dtranspose_wrapper
688 689


690 691 692
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
693 694 695 696 697 698 699 700 701 702 703 704 705 706
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
707
        self.python_api = conv2dtranspose_wrapper
708 709


710 711 712
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
713 714 715 716 717 718 719 720 721 722 723 724 725 726
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
727
        self.python_api = conv2dtranspose_wrapper
728 729


730 731 732
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
class TestCUDNNWithEvenUpsample_NHWC(TestWithEvenUpsample):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
748
        self.python_api = conv2dtranspose_wrapper
749 750


751 752 753
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
754
class TestCUDNN_FP16(TestConv2DTransposeOp):
755 756 757 758 759 760 761 762 763 764 765 766 767 768
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.need_check_grad = False
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
W
wanghuancoder 已提交
769
        self.python_api = conv2dtranspose_wrapper
770 771 772 773 774

    def test_check_output(self):
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(
775
                place, atol=0.02, check_dygraph=(not self.use_mkldnn)
776
            )
777
        else:
778
            self.check_output(check_dygraph=(not self.use_mkldnn))
779 780


781 782 783
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
784 785 786 787 788 789 790 791 792 793 794 795 796
class TestCUDNN_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


797 798 799
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
800 801 802 803 804 805 806 807 808 809 810 811 812
class TestCUDNNWithSymmetricPad_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


813 814 815
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
816 817 818 819 820 821 822 823 824 825 826 827 828
class TestCUDNNWithAsymmetricPad_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


829 830 831
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
832 833 834 835 836 837 838 839 840 841 842 843 844
class TestCUDNNWithStride_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


845 846 847
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
848 849 850 851 852 853 854 855 856 857 858 859 860
class TestCUDNNWithGroups_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


861 862 863
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
864 865 866 867 868 869 870 871 872 873 874 875
class TestCUDNNWithEvenUpsample_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'
876 877


C
cnn 已提交
878
class TestConv2DTransposeAPI(unittest.TestCase):
879
    def test_case1(self):
G
GGBond8488 已提交
880 881
        data1 = paddle.static.data(
            name='data1', shape=[-1, 3, 5, 5], dtype='float32'
882
        )
G
GGBond8488 已提交
883 884
        data2 = paddle.static.data(
            name='data2', shape=[-1, 5, 5, 3], dtype='float32'
885
        )
886
        out1 = paddle.static.nn.conv2d_transpose(
887 888 889 890 891 892
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NCHW',
        )
893
        out2 = paddle.static.nn.conv2d_transpose(
894 895 896 897 898 899
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NHWC',
        )
900
        out3 = paddle.static.nn.conv2d_transpose(
901 902 903 904 905 906 907
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            data_format='NHWC',
        )
908
        out4 = paddle.static.nn.conv2d_transpose(
909 910 911 912 913 914 915
            input=data1,
            groups=3,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
            data_format='NCHW',
        )
916
        out5 = paddle.static.nn.conv2d_transpose(
917 918 919 920 921 922 923
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='SAME',
            data_format='NCHW',
        )
924
        out6 = paddle.static.nn.conv2d_transpose(
925 926 927 928 929 930 931
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='VALID',
            data_format='NHWC',
        )
932
        out7 = paddle.static.nn.conv2d_transpose(
933 934 935 936 937 938 939
            input=data1,
            groups=1,
            num_filters=6,
            output_size=[7, 7],
            padding=[0, 0],
            data_format='NHWC',
        )
940 941 942 943 944 945 946 947 948 949

        data1_np = np.random.random((2, 3, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
950 951 952 953 954 955
        results = exe.run(
            fluid.default_main_program(),
            feed={"data1": data1_np, "data2": data2_np},
            fetch_list=[out1, out2, out3, out4, out5, out6, out7],
            return_numpy=True,
        )
956 957 958 959 960 961 962 963 964
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


C
cnn 已提交
965
class TestConv2DTransposeOpException(unittest.TestCase):
966
    def test_exception(self):
G
GGBond8488 已提交
967 968 969
        data = paddle.static.data(
            name='data', shape=[-1, 3, 5, 5], dtype="float32"
        )
970 971

        def attr_data_format():
972
            out = paddle.static.nn.conv2d_transpose(
973 974 975 976 977 978
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                data_format="NCDHW",
            )
979 980 981 982

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
983
            out = paddle.static.nn.conv2d_transpose(
984 985 986 987 988 989
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding='Vald',
            )
990 991 992 993

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
994
            out = paddle.static.nn.conv2d_transpose(
995 996 997 998 999 1000
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [1, 1], [0, 0], [0, 0]],
            )
1001 1002 1003 1004

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
1005
            out = paddle.static.nn.conv2d_transpose(
1006 1007 1008 1009 1010 1011 1012
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                data_format='NHWC',
            )
1013 1014 1015

        self.assertRaises(ValueError, attr_padding_with_data_format)

G
GGBond8488 已提交
1016 1017
        error_input = paddle.static.data(
            name='error_data', shape=[-1, 1], dtype="float32"
1018
        )
1019 1020

        def error_input_size():
1021
            out = paddle.static.nn.conv2d_transpose(
1022 1023
                input=error_input, groups=1, num_filters=6, filter_size=3
            )
1024 1025 1026 1027

        self.assertRaises(ValueError, error_input_size)

        def error_groups():
1028
            out = paddle.static.nn.conv2d_transpose(
1029 1030 1031 1032 1033 1034
                input=data,
                groups=0,
                num_filters=6,
                filter_size=3,
                data_format='NHWC',
            )
1035 1036 1037

        self.assertRaises(ValueError, error_groups)

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        def error_0_filter_number():
            out = paddle.static.nn.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=0,
                filter_size=3,
                data_format='NCHW',
            )

        self.assertRaises(ValueError, error_0_filter_number)

1049

1050 1051 1052
class TestConv2DTransposeRepr(unittest.TestCase):
    def test_case(self):
        paddle.disable_static()
1053
        x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1.0, max=1.0)
1054 1055 1056 1057 1058 1059 1060 1061
        conv = nn.Conv2DTranspose(4, 6, (3, 3), output_padding=1, stride=2)
        print(conv)
        y_var = conv(x_var)
        y_np = y_var.numpy()
        self.assertIsNotNone(y_np)
        paddle.enable_static()


1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
class TestConv2dTranspose(unittest.TestCase):
    def error_weight_input(self):
        array = np.array([1], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(array, [1, 1, 1, 1]), dtype='float32')
        weight = paddle.to_tensor(np.reshape(array, [1]), dtype='float32')
        paddle.nn.functional.conv2d_transpose(x, weight, bias=0)

    def test_type_error(self):
        self.assertRaises(ValueError, self.error_weight_input)


1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
class TestTensorOutputSize1(UnittestBase):
    def init_info(self):
        self.shapes = [[2, 3, 8, 8]]
        self.save_path = os.path.join(self.temp_dir.name, self.path_prefix())

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size1'

    def var_prefix(self):
        return "Vars["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
        out = paddle.paddle.nn.functional.conv2d_transpose(
1088 1089
            x, w_var, stride=2, output_size=output_size
        )
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        return out

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(8, 8)
            x = paddle.randn([2, 3, 8, 8])
            x.stop_gradient = False
            feat = fc(x)
            out = self.call_func(feat)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue(self.var_prefix() in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out])
            np.testing.assert_allclose(res[1].shape, (2, 6, 17, 17))

1111 1112 1113
            paddle.static.save_inference_model(
                self.save_path, [x], [feat, out], exe
            )
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            # Test for Inference Predictor
            infer_outs = self.infer_prog()
            np.testing.assert_allclose(infer_outs[1].shape, (2, 6, 17, 17))


class TestTensorOutputSize2(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size2'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        out = paddle.paddle.nn.functional.conv2d_transpose(
1127 1128
            x, w_var, stride=2, output_size=output_size
        )
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        return out


class TestTensorOutputSize3(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size3'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
1139
        out = paddle.static.nn.conv2d_transpose(
1140 1141
            x, num_filters=6, output_size=output_size, filter_size=3, stride=2
        )
1142 1143 1144 1145 1146 1147 1148 1149 1150
        return out


class TestTensorOutputSize4(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size4'

    def call_func(self, x):
        output_size = [17, paddle.assign([17])]
1151
        out = paddle.static.nn.conv2d_transpose(
1152 1153
            x, num_filters=6, output_size=output_size, filter_size=3, stride=2
        )
1154 1155 1156
        return out


Z
deconv  
zchen0211 已提交
1157 1158
if __name__ == '__main__':
    unittest.main()