Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
355caee1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
355caee1
编写于
5月 27, 2020
作者:
W
wangchaochaohu
提交者:
GitHub
5月 27, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix conv_transpose Op fp16 error test=develop (#24695)
上级
19e5f787
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
158 addition
and
29 deletion
+158
-29
paddle/fluid/operators/conv_cudnn_helper.h
paddle/fluid/operators/conv_cudnn_helper.h
+3
-1
paddle/fluid/operators/conv_transpose_cudnn_op.cu
paddle/fluid/operators/conv_transpose_cudnn_op.cu
+4
-2
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
.../paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
+149
-25
python/paddle/fluid/tests/unittests/white_list/op_accuracy_white_list.py
...luid/tests/unittests/white_list/op_accuracy_white_list.py
+2
-1
未找到文件。
paddle/fluid/operators/conv_cudnn_helper.h
浏览文件 @
355caee1
...
...
@@ -148,7 +148,7 @@ struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
}
#endif
if
(
!
exhaustive
)
{
if
(
!
exhaustive
&&
!
deterministic
)
{
#if CUDNN_VERSION >= 7001
int
perf_count
;
int
best_algo_idx
=
0
;
...
...
@@ -185,6 +185,8 @@ struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
workspace_size_limit
,
&
algo
));
#endif
VLOG
(
3
)
<<
"choose algo "
<<
algo
;
}
else
if
(
deterministic
)
{
algo
=
static_cast
<
cudnnConvolutionFwdAlgo_t
>
(
1
);
}
else
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
...
...
paddle/fluid/operators/conv_transpose_cudnn_op.cu
浏览文件 @
355caee1
...
...
@@ -245,7 +245,8 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
int
output_offset
=
transformed_output
.
numel
()
/
transformed_output
.
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
static_cast
<
T
>
(
1.0
),
beta
=
static_cast
<
T
>
(
0.0
);
ScalingParamType
<
T
>
alpha
=
1.0
f
;
ScalingParamType
<
T
>
beta
=
0.0
f
;
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
...
...
@@ -493,7 +494,8 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
int
output_grad_offset
=
transformed_output_grad
.
numel
()
/
transformed_output_grad
.
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
static_cast
<
T
>
(
1.0
),
beta
=
static_cast
<
T
>
(
0.0
);
ScalingParamType
<
T
>
alpha
=
1.0
f
;
ScalingParamType
<
T
>
beta
=
0.0
f
;
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
if
(
input_grad
)
{
// Because beta is zero, it is unnecessary to reset input_grad.
...
...
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op.py
浏览文件 @
355caee1
...
...
@@ -109,6 +109,7 @@ class TestConv2dTransposeOp(OpTest):
def
setUp
(
self
):
# init as conv transpose
self
.
dtype
=
np
.
float64
self
.
need_check_grad
=
True
self
.
is_test
=
False
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
...
...
@@ -152,35 +153,40 @@ class TestConv2dTransposeOp(OpTest):
self
.
check_output
(
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
def
test_check_grad_no_input
(
self
):
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Input'
]))
else
:
self
.
check_grad
([
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
if
self
.
need_check_grad
:
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
max_relative_error
=
0.02
,
no_grad_set
=
set
([
'Input'
]))
else
:
self
.
check_grad
(
[
'Filter'
],
'Output'
,
no_grad_set
=
set
([
'Input'
]))
def
test_check_grad_no_filter
(
self
):
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
else
:
self
.
check_grad
([
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
if
self
.
need_check_grad
:
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
else
:
self
.
check_grad
(
[
'Input'
],
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad
(
self
):
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.02
)
else
:
self
.
check_grad
(
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.02
)
if
self
.
need_check_grad
:
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.02
)
else
:
self
.
check_grad
(
set
([
'Input'
,
'Filter'
]),
'Output'
,
max_relative_error
=
0.02
)
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
...
...
@@ -708,6 +714,124 @@ class TestDepthwiseConvTransposeAsymmetricPad_NHWC(TestConv2dTransposeOp):
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNN_FP16
(
TestConv2dTransposeOp
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
def
init_op_type
(
self
):
self
.
need_check_grad
=
False
self
.
use_cudnn
=
True
self
.
op_type
=
"conv2d_transpose"
def
test_check_output
(
self
):
if
self
.
use_cudnn
:
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
0.02
,
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
else
:
self
.
check_output
(
check_dygraph
=
(
self
.
use_mkldnn
==
False
))
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNN_NHWC_FP16
(
TestCUDNN_FP16
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
5
,
5
,
3
]
# NHWC
f_c
=
self
.
input_size
[
-
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNWithSymmetricPad_NHWC_FP16
(
TestCUDNN_FP16
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
5
,
5
,
3
]
# NHWC
f_c
=
self
.
input_size
[
-
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNWithAsymmetricPad_NHWC_FP16
(
TestCUDNN_FP16
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
1
,
0
,
2
,
3
]
self
.
stride
=
[
2
,
2
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
5
,
5
,
3
]
# NHWC
f_c
=
self
.
input_size
[
-
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNWithStride_NHWC_FP16
(
TestCUDNN_FP16
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
2
,
2
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
5
,
5
,
3
]
# NHWC
f_c
=
self
.
input_size
[
-
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNWithGroups_NHWC_FP16
(
TestCUDNN_FP16
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
2
self
.
input_size
=
[
2
,
5
,
5
,
4
]
# NCHW
f_c
=
self
.
input_size
[
-
1
]
self
.
filter_size
=
[
f_c
,
3
,
3
,
3
]
self
.
data_format
=
'NHWC'
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"core is not compiled with CUDA"
)
class
TestCUDNNWithEvenUpsample_NHWC_FP16
(
TestCUDNN_FP16
):
def
init_test_case
(
self
):
self
.
dtype
=
np
.
float16
self
.
pad
=
[
2
,
2
]
self
.
stride
=
[
2
,
2
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
output_size
=
[
14
,
14
]
self
.
input_size
=
[
2
,
7
,
7
,
3
]
# NHWC
f_c
=
self
.
input_size
[
-
1
]
self
.
filter_size
=
[
f_c
,
6
,
5
,
5
]
self
.
data_format
=
'NHWC'
class
TestConv2dTransposeAPI
(
unittest
.
TestCase
):
def
test_case1
(
self
):
data1
=
fluid
.
layers
.
data
(
...
...
python/paddle/fluid/tests/unittests/white_list/op_accuracy_white_list.py
浏览文件 @
355caee1
...
...
@@ -80,5 +80,6 @@ NO_FP16_CHECK_GRAD_OP_LIST = [
'fused_elemwise_activation'
,
\
'pool2d'
,
\
'pool3d'
,
\
'softmax'
'softmax'
,
\
'conv2d_transpose'
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录