test_conv2d_transpose_op.py 34.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
Z
deconv  
zchen0211 已提交
16 17
import unittest
import numpy as np
18

K
Kaipeng Deng 已提交
19
import paddle
20
import paddle.nn as nn
21

K
Kaipeng Deng 已提交
22
paddle.enable_static()
23
import paddle.fluid.core as core
24
import paddle.fluid as fluid
25 26 27
from paddle.fluid import Program, program_guard
from test_attribute_var import UnittestBase
from op_test import OpTest
Z
deconv  
zchen0211 已提交
28 29


C
chengduoZH 已提交
30
def conv2dtranspose_forward_naive(input_, filter_, attrs):
31 32
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
33 34 35 36
        raise ValueError(
            "Unknown Attr(padding_algorithm): '%s'. "
            "It can only be 'SAME' or 'VALID'." % str(padding_algorithm)
        )
37 38 39

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 3, 1, 2])
Z
deconv  
zchen0211 已提交
40
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
41 42
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
43
    assert in_c == f_c
Y
Yibing Liu 已提交
44
    out_c = f_out_c * groups
M
minqiyang 已提交
45
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
46

47 48 49 50 51
    stride, pad, dilations = (
        attrs['strides'],
        attrs['paddings'],
        attrs['dilations'],
    )
52 53 54 55

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
56 57 58
        for input_size, filter_size, stride_size in zip(
            input_shape, kernel_size, kernel_stride
        ):
59
            out_size = int((input_size + stride_size - 1) / stride_size)
60
            pad_sum = np.max(
61 62
                ((out_size - 1) * stride_size + filter_size - input_size, 0)
            )
63 64 65 66 67 68 69 70 71 72
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
73 74
        dilations = [1, 1]
        input_data_shape = input_.shape[2:4]
75 76 77 78 79 80 81 82
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]

C
chengduoZH 已提交
83 84 85 86
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
87 88
    if 'output_size' in attrs:
        output_size = attrs['output_size']
89 90
        out_h = output_size[0] + pad_h_0 + pad_h_1
        out_w = output_size[1] + pad_w_0 + pad_w_1
L
LielinJiang 已提交
91 92 93 94 95
    out_pad_h = 0
    out_pad_w = 0
    if 'output_padding' in attrs:
        out_pad_h = attrs['output_padding'][0]
        out_pad_w = attrs['output_padding'][1]
96 97 98
    out = np.zeros(
        (in_n, out_c, out_h + out_pad_h, out_w + out_pad_w), dtype=input_.dtype
    )
Z
deconv  
zchen0211 已提交
99 100 101 102

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
103
                for g in range(groups):
104 105 106
                    input_masked = input_[
                        n, g * sub_in_c : (g + 1) * sub_in_c, i, j
                    ]  # (c)
Y
Yibing Liu 已提交
107 108 109 110 111
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
112 113 114 115 116 117
                            input_masked
                            * filter_[
                                g * sub_in_c : (g + 1) * sub_in_c, k, :, :
                            ],
                            axis=0,
                        )
Y
Yibing Liu 已提交
118
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
119
                        j1, j2 = j * stride[1], j * stride[1] + d_bolck_w
120 121 122 123 124 125 126 127 128 129 130 131 132
                        out[
                            n,
                            g * f_out_c + k,
                            i1 : i2 : dilations[0],
                            j1 : j2 : dilations[1],
                        ] += tmp_out

    out = out[
        :,
        :,
        pad_h_0 : out_h - pad_h_1 + out_pad_h,
        pad_w_0 : out_w - pad_w_1 + out_pad_w,
    ]
133 134
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 1])
Z
deconv  
zchen0211 已提交
135 136 137
    return out


C
cnn 已提交
138
class TestConv2DTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
139
    def setUp(self):
Z
zchen0211 已提交
140
        # init as conv transpose
141
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
142
        self.need_check_grad = True
J
Jacek Czaja 已提交
143
        self.is_test = False
144
        self.use_cudnn = False
J
Jacek Czaja 已提交
145
        self.use_mkldnn = False
146
        self.output_size = None
L
LielinJiang 已提交
147
        self.output_padding = []
148 149 150
        self.data_format = "NCHW"
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"
Z
deconv  
zchen0211 已提交
151 152 153
        self.init_op_type()
        self.init_test_case()

154 155
        input_ = np.random.random(self.input_size).astype(self.dtype)
        filter_ = np.random.random(self.filter_size).astype(self.dtype)
Z
deconv  
zchen0211 已提交
156 157 158 159 160

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
161
            'padding_algorithm': self.padding_algorithm,
Y
Yibing Liu 已提交
162
            'groups': self.groups,
163 164
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
J
Jacek Czaja 已提交
165 166
            'is_test': self.is_test,
            'use_mkldnn': self.use_mkldnn,
167
            'data_format': self.data_format,
Z
deconv  
zchen0211 已提交
168
        }
169 170
        if self.output_size is not None:
            self.attrs['output_size'] = self.output_size
C
chengduoZH 已提交
171

L
LielinJiang 已提交
172 173 174
        if len(self.output_padding) > 0:
            self.attrs['output_padding'] = self.output_padding

175 176 177
        output = conv2dtranspose_forward_naive(
            input_, filter_, self.attrs
        ).astype(self.dtype)
C
chengduoZH 已提交
178

Z
deconv  
zchen0211 已提交
179 180 181
        self.outputs = {'Output': output}

    def test_check_output(self):
182
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
183 184
        if self.use_cudnn:
            place = core.CUDAPlace(0)
185
            self.check_output_with_place(
186
                place, atol=1e-5, check_dygraph=(not self.use_mkldnn)
187
            )
188
        else:
189
            self.check_output(check_dygraph=(not self.use_mkldnn))
Z
deconv  
zchen0211 已提交
190

Z
zchen0211 已提交
191
    def test_check_grad_no_input(self):
192 193 194
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
195 196 197 198 199 200 201
                self.check_grad_with_place(
                    place,
                    ['Filter'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Input']),
                )
202
            else:
203 204 205
                self.check_grad(
                    ['Filter'], 'Output', no_grad_set=set(['Input'])
                )
Z
zchen0211 已提交
206 207

    def test_check_grad_no_filter(self):
208 209 210
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
211 212 213
                self.check_grad_with_place(
                    place, ['Input'], 'Output', no_grad_set=set(['Filter'])
                )
214
            else:
215 216 217
                self.check_grad(
                    ['Input'], 'Output', no_grad_set=set(['Filter'])
                )
Z
deconv  
zchen0211 已提交
218

Z
zchen0211 已提交
219
    def test_check_grad(self):
220 221 222
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
223 224 225 226 227 228
                self.check_grad_with_place(
                    place,
                    set(['Input', 'Filter']),
                    'Output',
                    max_relative_error=0.02,
                )
229
            else:
230 231 232
                self.check_grad(
                    set(['Input', 'Filter']), 'Output', max_relative_error=0.02
                )
C
chengduoZH 已提交
233 234 235 236 237

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
238
        self.groups = 1
C
chengduoZH 已提交
239 240 241 242 243 244
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
245

Z
zchen0211 已提交
246

C
cnn 已提交
247
class TestWithSymmetricPad(TestConv2DTransposeOp):
C
chengduoZH 已提交
248 249 250 251
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
252
        self.groups = 1
C
chengduoZH 已提交
253 254 255 256 257
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
258
class TestWithAsymmetricPad(TestConv2DTransposeOp):
259 260 261 262 263 264 265 266 267 268
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
269
class TestWithSAMEPad(TestConv2DTransposeOp):
270
    def init_test_case(self):
271 272
        self.stride = [2, 1]
        self.dilations = [1, 2]
273
        self.groups = 1
274
        self.input_size = [2, 3, 6, 5]  # NCHW
275
        f_c = self.input_size[1]
276
        self.filter_size = [f_c, 6, 4, 3]
277 278 279
        self.padding_algorithm = 'SAME'


C
cnn 已提交
280
class TestWithVALIDPad(TestConv2DTransposeOp):
281 282 283 284 285 286 287 288 289 290
    def init_test_case(self):
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]
        self.padding_algorithm = 'VALID'


C
cnn 已提交
291
class TestWithGroups(TestConv2DTransposeOp):
Y
Yibing Liu 已提交
292 293 294 295 296 297 298 299 300 301
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
cnn 已提交
302
class TestWithStride(TestConv2DTransposeOp):
C
chengduoZH 已提交
303 304 305 306
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
307
        self.groups = 1
C
chengduoZH 已提交
308 309 310 311 312
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
313
class TestWithDilation(TestConv2DTransposeOp):
C
chengduoZH 已提交
314 315 316
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
317
        self.groups = 1
C
chengduoZH 已提交
318 319 320 321 322 323
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
cnn 已提交
324
class TestWithEvenUpsample(TestConv2DTransposeOp):
325 326 327 328 329 330 331 332 333 334 335
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
336
class TestWithEvenUpsampleOutputPadding(TestConv2DTransposeOp):
L
LielinJiang 已提交
337 338 339 340 341 342 343 344 345 346 347
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


C
cnn 已提交
348
class Test_NHWC(TestConv2DTransposeOp):
349 350 351 352 353 354 355 356 357 358 359
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
360
class TestWithSymmetricPad_NHWC(TestConv2DTransposeOp):
361 362 363 364 365 366 367 368 369 370 371
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
372
class TestWithAsymmetricPad_NHWC(TestConv2DTransposeOp):
373 374 375 376 377 378 379 380 381 382 383
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
384
class TestWithGroups_NHWC(TestConv2DTransposeOp):
385 386 387 388 389 390 391 392 393 394 395
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
396
class TestWithStride_NHWC(TestConv2DTransposeOp):
397 398 399 400 401 402 403 404 405 406 407
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
408
class TestWithDilation_NHWC(TestConv2DTransposeOp):
409 410 411 412 413 414 415 416 417 418 419
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [2, 2]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


C
cnn 已提交
420
class TestWithEvenUpsample_NHWC(TestConv2DTransposeOp):
421 422 423 424 425 426 427 428 429 430 431 432
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
cnn 已提交
433
class TestWithEvenUpsample_NHWC_output_padding(TestConv2DTransposeOp):
L
LielinJiang 已提交
434 435 436 437 438 439 440 441 442 443 444 445
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_padding = [1, 1]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
446
# ------------ test_cudnn ------------
447 448 449
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
450
class TestCUDNN(TestConv2DTransposeOp):
Z
deconv  
zchen0211 已提交
451
    def init_op_type(self):
452 453
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
454

Z
deconv  
zchen0211 已提交
455

456 457 458
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
459
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
460 461 462
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
463
        self.groups = 1
C
chengduoZH 已提交
464 465 466 467 468 469
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
470 471
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
472 473


474 475 476
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


492 493 494
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
495 496 497
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
498
        self.stride = [1, 2]
499 500 501 502 503 504 505 506 507 508 509
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


510 511 512
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


528 529 530
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
531
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
532 533 534
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
535
        self.groups = 1
C
chengduoZH 已提交
536 537 538 539 540 541
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
542 543
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
544 545


546 547 548
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


564
# ------------ test_cudnn ------------
565 566 567
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
568 569 570 571 572 573
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


574 575
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
576
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
577 578 579 580 581 582 583 584 585
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
586
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
587

588

589 590 591
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
592
class TestCUDNN_NHWC(TestConv2DTransposeOp):
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


608 609 610
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


627 628 629
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
class TestCUDNNWithAsymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


646 647 648
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


665 666 667
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


684 685 686
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
class TestCUDNNWithEvenUpsample_NHWC(TestWithEvenUpsample):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


704 705 706
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
cnn 已提交
707
class TestCUDNN_FP16(TestConv2DTransposeOp):
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.need_check_grad = False
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"

    def test_check_output(self):
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(
727
                place, atol=0.02, check_dygraph=(not self.use_mkldnn)
728
            )
729
        else:
730
            self.check_output(check_dygraph=(not self.use_mkldnn))
731 732


733 734 735
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
736 737 738 739 740 741 742 743 744 745 746 747 748
class TestCUDNN_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


749 750 751
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
752 753 754 755 756 757 758 759 760 761 762 763 764
class TestCUDNNWithSymmetricPad_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


765 766 767
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
768 769 770 771 772 773 774 775 776 777 778 779 780
class TestCUDNNWithAsymmetricPad_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


781 782 783
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
784 785 786 787 788 789 790 791 792 793 794 795 796
class TestCUDNNWithStride_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


797 798 799
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
800 801 802 803 804 805 806 807 808 809 810 811 812
class TestCUDNNWithGroups_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


813 814 815
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
816 817 818 819 820 821 822 823 824 825 826 827
class TestCUDNNWithEvenUpsample_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'
828 829


C
cnn 已提交
830
class TestConv2DTransposeAPI(unittest.TestCase):
831
    def test_case1(self):
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
        data1 = fluid.layers.data(
            name='data1', shape=[3, 5, 5], dtype='float32'
        )
        data2 = fluid.layers.data(
            name='data2', shape=[5, 5, 3], dtype='float32'
        )
        out1 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NCHW',
        )
        out2 = fluid.layers.conv2d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NHWC',
        )
        out3 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            data_format='NHWC',
        )
        out4 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=3,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
            data_format='NCHW',
        )
        out5 = fluid.layers.conv2d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='SAME',
            data_format='NCHW',
        )
        out6 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='VALID',
            data_format='NHWC',
        )
        out7 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            output_size=[7, 7],
            padding=[0, 0],
            data_format='NHWC',
        )
892 893 894 895 896 897 898 899 900 901

        data1_np = np.random.random((2, 3, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
902 903 904 905 906 907
        results = exe.run(
            fluid.default_main_program(),
            feed={"data1": data1_np, "data2": data2_np},
            fetch_list=[out1, out2, out3, out4, out5, out6, out7],
            return_numpy=True,
        )
908 909 910 911 912 913 914 915 916
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


C
cnn 已提交
917
class TestConv2DTransposeOpException(unittest.TestCase):
918 919 920 921
    def test_exception(self):
        data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")

        def attr_data_format():
922 923 924 925 926 927 928
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                data_format="NCDHW",
            )
929 930 931 932

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
933 934 935 936 937 938 939
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding='Vald',
            )
940 941 942 943

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
944 945 946 947 948 949 950
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [1, 1], [0, 0], [0, 0]],
            )
951 952 953 954

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
955 956 957 958 959 960 961 962
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                data_format='NHWC',
            )
963 964 965

        self.assertRaises(ValueError, attr_padding_with_data_format)

966 967 968
        error_input = fluid.layers.data(
            name='error_data', shape=[1], dtype="float32"
        )
969 970

        def error_input_size():
971 972 973
            out = fluid.layers.conv2d_transpose(
                input=error_input, groups=1, num_filters=6, filter_size=3
            )
974 975 976 977

        self.assertRaises(ValueError, error_input_size)

        def error_groups():
978 979 980 981 982 983 984
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=0,
                num_filters=6,
                filter_size=3,
                data_format='NHWC',
            )
985 986 987

        self.assertRaises(ValueError, error_groups)

988

989 990 991
class TestConv2DTransposeRepr(unittest.TestCase):
    def test_case(self):
        paddle.disable_static()
992
        x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1.0, max=1.0)
993 994 995 996 997 998 999 1000
        conv = nn.Conv2DTranspose(4, 6, (3, 3), output_padding=1, stride=2)
        print(conv)
        y_var = conv(x_var)
        y_np = y_var.numpy()
        self.assertIsNotNone(y_np)
        paddle.enable_static()


1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
class TestTensorOutputSize1(UnittestBase):
    def init_info(self):
        self.shapes = [[2, 3, 8, 8]]
        self.save_path = os.path.join(self.temp_dir.name, self.path_prefix())

    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size1'

    def var_prefix(self):
        return "Vars["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
        out = paddle.paddle.nn.functional.conv2d_transpose(
1016 1017
            x, w_var, stride=2, output_size=output_size
        )
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        return out

    def test_static(self):
        main_prog = Program()
        starup_prog = Program()
        with program_guard(main_prog, starup_prog):
            fc = paddle.nn.Linear(8, 8)
            x = paddle.randn([2, 3, 8, 8])
            x.stop_gradient = False
            feat = fc(x)
            out = self.call_func(feat)

            sgd = paddle.optimizer.SGD()
            sgd.minimize(paddle.mean(out))
            self.assertTrue(self.var_prefix() in str(main_prog))

            exe = paddle.static.Executor()
            exe.run(starup_prog)
            res = exe.run(fetch_list=[feat, out])
            np.testing.assert_allclose(res[1].shape, (2, 6, 17, 17))

1039 1040 1041
            paddle.static.save_inference_model(
                self.save_path, [x], [feat, out], exe
            )
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            # Test for Inference Predictor
            infer_outs = self.infer_prog()
            np.testing.assert_allclose(infer_outs[1].shape, (2, 6, 17, 17))


class TestTensorOutputSize2(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size2'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        out = paddle.paddle.nn.functional.conv2d_transpose(
1055 1056
            x, w_var, stride=2, output_size=output_size
        )
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        return out


class TestTensorOutputSize3(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size3'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17])
1067 1068 1069
        out = paddle.fluid.layers.conv2d_transpose(
            x, num_filters=6, output_size=output_size, filter_size=3, stride=2
        )
1070 1071 1072 1073 1074 1075 1076 1077 1078
        return out


class TestTensorOutputSize4(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size4'

    def call_func(self, x):
        output_size = [17, paddle.assign([17])]
1079 1080 1081
        out = paddle.fluid.layers.conv2d_transpose(
            x, num_filters=6, output_size=output_size, filter_size=3, stride=2
        )
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        return out


class TestTensorOutputSize5(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size5'

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, paddle.assign([17])]
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
1097 1098
            stride=2,
        )
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize6(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size6'

    def var_prefix(self):
        return "Var["

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = paddle.assign([17, 17])
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
1118 1119
            stride=2,
        )
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize7(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size7'

    def var_prefix(self):
        return ""

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = 17
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
1139 1140
            stride=2,
        )
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        out = conv2d_trans(x)
        return out


class TestTensorOutputSize8(TestTensorOutputSize1):
    def path_prefix(self):
        return 'conv2d_transpose_tensor_output_size8'

    def var_prefix(self):
        return ""

    def call_func(self, x):
        w_var = paddle.randn((3, 6, 3, 3), dtype='float32')
        output_size = [17, 17]
        conv2d_trans = paddle.fluid.dygraph.Conv2DTranspose(
            num_channels=3,
            num_filters=6,
            filter_size=3,
            output_size=output_size,
1160 1161
            stride=2,
        )
1162 1163 1164 1165
        out = conv2d_trans(x)
        return out


Z
deconv  
zchen0211 已提交
1166 1167
if __name__ == '__main__':
    unittest.main()