test_conj_op.py 5.0 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16
import unittest
17

18
import numpy as np
19

20
import paddle
21

22
sys.path.append("..")
W
wanghuancoder 已提交
23
from eager_op_test import OpTest
24 25
from numpy.random import random as rand

26 27 28 29 30 31 32 33 34
import paddle.fluid.dygraph as dg
import paddle.static as static

paddle.enable_static()


class TestConjOp(OpTest):
    def setUp(self):
        self.op_type = "conj"
H
hong 已提交
35
        self.python_api = paddle.tensor.conj
36 37 38 39 40 41 42 43
        self.init_dtype_type()
        self.init_input_output()
        self.init_grad_input_output()

    def init_dtype_type(self):
        self.dtype = np.complex64

    def init_input_output(self):
44 45 46
        x = (
            np.random.random((12, 14)) + 1j * np.random.random((12, 14))
        ).astype(self.dtype)
47 48 49 50 51 52
        out = np.conj(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def init_grad_input_output(self):
53 54 55
        self.grad_out = (np.ones((12, 14)) + 1j * np.ones((12, 14))).astype(
            self.dtype
        )
56 57 58
        self.grad_in = np.conj(self.grad_out)

    def test_check_output(self):
W
wanghuancoder 已提交
59
        self.check_output()
60 61

    def test_check_grad_normal(self):
62 63 64 65 66 67
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_in],
            user_defined_grad_outputs=[self.grad_out],
        )
68 69 70 71 72 73 74 75 76 77 78


class TestComplexConjOp(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_conj_api(self):
        for dtype in self._dtypes:
79 80 81
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
82 83 84 85 86
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
87
                    np.testing.assert_array_equal(result, target)
88 89 90

    def test_conj_operator(self):
        for dtype in self._dtypes:
91 92 93
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
94 95 96 97 98
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = var_x.conj().numpy()
                    target = np.conj(input)
99
                    np.testing.assert_array_equal(result, target)
100 101 102

    def test_conj_static_mode(self):
        def init_input_output(dtype):
103 104 105
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
106 107 108 109 110 111
            return {'x': input}, np.conj(input)

        for dtype in self._dtypes:
            input_dict, np_res = init_input_output(dtype)
            for place in self._places:
                with static.program_guard(static.Program()):
112 113 114 115 116 117
                    x_dtype = (
                        np.complex64 if dtype == "float32" else np.complex128
                    )
                    x = static.data(
                        name="x", shape=[2, 20, 2, 3], dtype=x_dtype
                    )
118 119 120 121
                    out = paddle.conj(x)

                    exe = static.Executor(place)
                    out_value = exe.run(feed=input_dict, fetch_list=[out.name])
122
                    np.testing.assert_array_equal(np_res, out_value[0])
123 124 125 126 127 128 129 130 131

    def test_conj_api_real_number(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
132
                    np.testing.assert_array_equal(result, target)
133 134


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
class Testfp16ConjOp(unittest.TestCase):
    def testfp16(self):
        input_x = (
            np.random.random((12, 14)) + 1j * np.random.random((12, 14))
        ).astype('float16')
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=[12, 14], dtype='float16')
            out = paddle.conj(x)
            if paddle.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                out = exe.run(feed={'x': input_x}, fetch_list=[out])


150 151
if __name__ == "__main__":
    unittest.main()