test_conj_op.py 4.5 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import sys
19

20 21 22 23 24 25 26 27 28 29 30 31
sys.path.append("..")
from op_test import OpTest
import paddle.fluid.dygraph as dg
import paddle.static as static
from numpy.random import random as rand

paddle.enable_static()


class TestConjOp(OpTest):
    def setUp(self):
        self.op_type = "conj"
H
hong 已提交
32
        self.python_api = paddle.tensor.conj
33 34 35 36 37 38 39 40
        self.init_dtype_type()
        self.init_input_output()
        self.init_grad_input_output()

    def init_dtype_type(self):
        self.dtype = np.complex64

    def init_input_output(self):
41 42 43
        x = (
            np.random.random((12, 14)) + 1j * np.random.random((12, 14))
        ).astype(self.dtype)
44 45 46 47 48 49
        out = np.conj(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def init_grad_input_output(self):
50 51 52
        self.grad_out = (np.ones((12, 14)) + 1j * np.ones((12, 14))).astype(
            self.dtype
        )
53 54 55
        self.grad_in = np.conj(self.grad_out)

    def test_check_output(self):
H
hong 已提交
56
        self.check_output(check_eager=True)
57 58

    def test_check_grad_normal(self):
59 60 61 62 63 64 65
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_in],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
66 67 68 69 70 71 72 73 74 75 76


class TestComplexConjOp(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_conj_api(self):
        for dtype in self._dtypes:
77 78 79
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
80 81 82 83 84
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
85
                    np.testing.assert_array_equal(result, target)
86 87 88

    def test_conj_operator(self):
        for dtype in self._dtypes:
89 90 91
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
92 93 94 95 96
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = var_x.conj().numpy()
                    target = np.conj(input)
97
                    np.testing.assert_array_equal(result, target)
98 99 100

    def test_conj_static_mode(self):
        def init_input_output(dtype):
101 102 103
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
104 105 106 107 108 109
            return {'x': input}, np.conj(input)

        for dtype in self._dtypes:
            input_dict, np_res = init_input_output(dtype)
            for place in self._places:
                with static.program_guard(static.Program()):
110 111 112 113 114 115
                    x_dtype = (
                        np.complex64 if dtype == "float32" else np.complex128
                    )
                    x = static.data(
                        name="x", shape=[2, 20, 2, 3], dtype=x_dtype
                    )
116 117 118 119
                    out = paddle.conj(x)

                    exe = static.Executor(place)
                    out_value = exe.run(feed=input_dict, fetch_list=[out.name])
120
                    np.testing.assert_array_equal(np_res, out_value[0])
121 122 123 124 125 126 127 128 129

    def test_conj_api_real_number(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
130
                    np.testing.assert_array_equal(result, target)
131 132 133 134


if __name__ == "__main__":
    unittest.main()