test_conj_op.py 4.5 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import sys
16
import unittest
17

18
import numpy as np
19

20
import paddle
21

22
sys.path.append("..")
23
from numpy.random import random as rand
24
from op_test import OpTest
25

26 27 28 29 30 31 32 33 34
import paddle.fluid.dygraph as dg
import paddle.static as static

paddle.enable_static()


class TestConjOp(OpTest):
    def setUp(self):
        self.op_type = "conj"
H
hong 已提交
35
        self.python_api = paddle.tensor.conj
36 37 38 39 40 41 42 43
        self.init_dtype_type()
        self.init_input_output()
        self.init_grad_input_output()

    def init_dtype_type(self):
        self.dtype = np.complex64

    def init_input_output(self):
44 45 46
        x = (
            np.random.random((12, 14)) + 1j * np.random.random((12, 14))
        ).astype(self.dtype)
47 48 49 50 51 52
        out = np.conj(x)

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}

    def init_grad_input_output(self):
53 54 55
        self.grad_out = (np.ones((12, 14)) + 1j * np.ones((12, 14))).astype(
            self.dtype
        )
56 57 58
        self.grad_in = np.conj(self.grad_out)

    def test_check_output(self):
H
hong 已提交
59
        self.check_output(check_eager=True)
60 61

    def test_check_grad_normal(self):
62 63 64 65 66 67 68
        self.check_grad(
            ['X'],
            'Out',
            user_defined_grads=[self.grad_in],
            user_defined_grad_outputs=[self.grad_out],
            check_eager=True,
        )
69 70 71 72 73 74 75 76 77 78 79


class TestComplexConjOp(unittest.TestCase):
    def setUp(self):
        self._dtypes = ["float32", "float64"]
        self._places = [paddle.CPUPlace()]
        if paddle.is_compiled_with_cuda():
            self._places.append(paddle.CUDAPlace(0))

    def test_conj_api(self):
        for dtype in self._dtypes:
80 81 82
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
83 84 85 86 87
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
88
                    np.testing.assert_array_equal(result, target)
89 90 91

    def test_conj_operator(self):
        for dtype in self._dtypes:
92 93 94
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
95 96 97 98 99
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = var_x.conj().numpy()
                    target = np.conj(input)
100
                    np.testing.assert_array_equal(result, target)
101 102 103

    def test_conj_static_mode(self):
        def init_input_output(dtype):
104 105 106
            input = rand([2, 20, 2, 3]).astype(dtype) + 1j * rand(
                [2, 20, 2, 3]
            ).astype(dtype)
107 108 109 110 111 112
            return {'x': input}, np.conj(input)

        for dtype in self._dtypes:
            input_dict, np_res = init_input_output(dtype)
            for place in self._places:
                with static.program_guard(static.Program()):
113 114 115 116 117 118
                    x_dtype = (
                        np.complex64 if dtype == "float32" else np.complex128
                    )
                    x = static.data(
                        name="x", shape=[2, 20, 2, 3], dtype=x_dtype
                    )
119 120 121 122
                    out = paddle.conj(x)

                    exe = static.Executor(place)
                    out_value = exe.run(feed=input_dict, fetch_list=[out.name])
123
                    np.testing.assert_array_equal(np_res, out_value[0])
124 125 126 127 128 129 130 131 132

    def test_conj_api_real_number(self):
        for dtype in self._dtypes:
            input = rand([2, 20, 2, 3]).astype(dtype)
            for place in self._places:
                with dg.guard(place):
                    var_x = paddle.to_tensor(input)
                    result = paddle.conj(var_x).numpy()
                    target = np.conj(input)
133
                    np.testing.assert_array_equal(result, target)
134 135 136 137


if __name__ == "__main__":
    unittest.main()