helper.h 9.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

T
tensor-tang 已提交
17
#include <iostream>
18
#include <map>
Y
Yihua Xu 已提交
19
#include <memory>
T
tensor-tang 已提交
20
#include <string>
21 22
#include <unordered_map>
#include <utility>  // for std::move
T
tensor-tang 已提交
23
#include <vector>
W
wanghuancoder 已提交
24

T
tensor-tang 已提交
25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/operators/jit/gen_base.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/operators/jit/kernel_key.h"
#include "paddle/fluid/operators/jit/kernel_pool.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace jit {

W
wanghuancoder 已提交
35 36
class GenBase;

37
template <typename KernelTuple, typename PlaceType>
T
tensor-tang 已提交
38
inline typename std::enable_if<
39
    std::is_same<typename KernelTuple::data_type, float>::value &&
T
tensor-tang 已提交
40
        std::is_same<PlaceType, platform::CPUPlace>::value,
41
    const Kernel*>::type
42 43
GetJitCode(const typename KernelTuple::attr_type& attr) {
  using Attr = typename KernelTuple::attr_type;
44
  int64_t key = JitCodeKey<Attr>(attr);
45
  auto& codes = JitCodePool<KernelTuple::kernel_type>::Instance();
T
tensor-tang 已提交
46
  if (codes.Has(key)) {
47
    return codes.AllKernels().at(key).get();
T
tensor-tang 已提交
48 49
  }

T
tensor-tang 已提交
50
  // creator is not related with attr, so can use KernelKey as key
51
  KernelKey kkey(KernelTuple::kernel_type, PlaceType());
T
tensor-tang 已提交
52
  // pool: (KernelKey(type, place), vector<GenCreatorPtr>)
53
  auto& creator_map = JitCodeCreatorPool::Instance().AllCreators();
T
tensor-tang 已提交
54 55 56 57 58
  auto iter = creator_map.find(kkey);
  if (iter != creator_map.end()) {
    auto& creators = iter->second;
    for (auto& cur : creators) {
      auto i = dynamic_cast<const JitCodeCreator<Attr>*>(cur.get());
59
      if (i && i->CanBeUsed(attr)) {
T
tensor-tang 已提交
60 61
        auto p = i->CreateJitCode(attr);
        if (p) {
62
          auto res = p.get();
T
tensor-tang 已提交
63
          codes.Insert(key, std::move(p));
64
          return res;
T
tensor-tang 已提交
65 66 67 68
        }
      }
    }
  }
T
tensor-tang 已提交
69 70 71
  return nullptr;
}

72
template <typename KernelTuple, typename PlaceType>
T
tensor-tang 已提交
73
inline typename std::enable_if<
74
    !std::is_same<typename KernelTuple::data_type, float>::value ||
T
tensor-tang 已提交
75
        !std::is_same<PlaceType, platform::CPUPlace>::value,
76
    const Kernel*>::type
77
GetJitCode(const typename KernelTuple::attr_type& attr) {
T
tensor-tang 已提交
78 79 80
  return nullptr;
}

T
tensor-tang 已提交
81 82
// Refer code do not related with attr, which is just for cast
// Refer is always on CPUPlace
83
template <typename KernelTuple>
84 85
inline const Kernel* GetReferKernel() {
  auto& ref_pool = ReferKernelPool::Instance().AllKernels();
86
  KernelKey kkey(KernelTuple::kernel_type, platform::CPUPlace());
T
tensor-tang 已提交
87 88 89 90 91
  auto ref_iter = ref_pool.find(kkey);
  PADDLE_ENFORCE(ref_iter != ref_pool.end(),
                 "Every Kernel should have reference function.");
  auto& ref_impls = ref_iter->second;
  for (auto& impl : ref_impls) {
92
    auto i = dynamic_cast<const ReferKernel<KernelTuple>*>(impl.get());
T
tensor-tang 已提交
93
    if (i) {
94
      return i;
T
tensor-tang 已提交
95 96 97 98 99
    }
  }
  return nullptr;
}

100 101 102 103 104 105 106 107 108 109 110
template <typename KernelTuple>
inline typename KernelTuple::func_type GetReferFunc() {
  auto ker = GetReferKernel<KernelTuple>();
  auto p = dynamic_cast<const ReferKernel<KernelTuple>*>(ker);
  PADDLE_ENFORCE(p, "The Refer kernel should exsit");
  return p->GetFunc();
}

// Return all Kernels that can be used
template <typename KernelTuple, typename PlaceType>
std::vector<const Kernel*> GetAllCandidateKernels(
111
    const typename KernelTuple::attr_type& attr) {
112 113 114 115 116
  // the search order shoudl be jitcode > more > refer
  std::vector<const Kernel*> res;
  auto jitker = GetJitCode<KernelTuple, PlaceType>(attr);
  if (jitker) {
    res.emplace_back(jitker);
T
tensor-tang 已提交
117
  }
T
tensor-tang 已提交
118

119
  // more kernelpool: (KernelKey(type, place), vector<KernelPtr>)
120
  KernelKey kkey(KernelTuple::kernel_type, PlaceType());
121
  auto& pool = KernelPool::Instance().AllKernels();
T
tensor-tang 已提交
122 123 124 125
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
126
      auto i = dynamic_cast<const KernelMore<KernelTuple>*>(impl.get());
127 128
      if (i && i->CanBeUsed(attr)) {
        res.emplace_back(i);
T
tensor-tang 已提交
129 130 131 132 133
      }
    }
  }

  // The last implementation should be reference function on CPUPlace.
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
  auto ref = GetReferKernel<KernelTuple>();
  PADDLE_ENFORCE(ref != nullptr, "Refer Kernel can not be empty.");
  res.emplace_back(ref);
  return res;
}

template <typename KernelTuple, typename PlaceType = platform::CPUPlace>
std::vector<std::pair<std::string, typename KernelTuple::func_type>>
GetAllCandidateFuncsWithTypes(const typename KernelTuple::attr_type& attr) {
  using Func = typename KernelTuple::func_type;
  auto kers = GetAllCandidateKernels<KernelTuple, PlaceType>(attr);
  std::vector<std::pair<std::string, Func>> res;
  for (auto k : kers) {
    std::string name = k->ImplType();
    if (name == "JitCode") {
      auto i = dynamic_cast<const GenBase*>(k);
      PADDLE_ENFORCE(i, "jitcode kernel cast can not fail.");
      res.emplace_back(std::make_pair(name, i->template getCode<Func>()));
    } else {
      auto i = dynamic_cast<const KernelMore<KernelTuple>*>(k);
      PADDLE_ENFORCE(i, "kernel cast can not fail.");
      res.emplace_back(std::make_pair(name, i->GetFunc()));
    }
  }
  return res;
}

template <typename KernelTuple, typename PlaceType = platform::CPUPlace>
std::vector<typename KernelTuple::func_type> GetAllCandidateFuncs(
    const typename KernelTuple::attr_type& attr) {
  auto funcs = GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  std::vector<typename KernelTuple::func_type> res;
  for (auto& i : funcs) {
    res.emplace_back(i.second);
  }
  return res;
}

template <typename KernelTuple, typename PlaceType = platform::CPUPlace>
typename KernelTuple::func_type GetDefaultBestFunc(
    const typename KernelTuple::attr_type& attr) {
  auto funcs = GetAllCandidateFuncs<KernelTuple, PlaceType>(attr);
  PADDLE_ENFORCE_GE(funcs.size(), 1UL);
  // Here could do some runtime benchmark of this attr and return the best one.
  // But yet just get the first one as the default best one,
  // which is searched in order and tuned by offline.
  return funcs[0];
T
tensor-tang 已提交
181 182
}

183
extern std::map<size_t, std::shared_ptr<void>>& GetFuncCacheMap();
Y
Yihua Xu 已提交
184

185
template <typename KernelTuple, typename PlaceType>
T
tensor-tang 已提交
186
class KernelFuncs {
T
tensor-tang 已提交
187
 public:
T
tensor-tang 已提交
188 189
  KernelFuncs() = default;
  static KernelFuncs& Cache() {
Y
Yihua Xu 已提交
190
    auto& func_cache_map = GetFuncCacheMap();
191
    auto key = typeid(KernelFuncs<KernelTuple, PlaceType>).hash_code();
Y
Yihua Xu 已提交
192 193 194 195 196 197 198 199 200
    auto iter = func_cache_map.find(key);
    if (iter != func_cache_map.end()) {
      return *(KernelFuncs<KernelTuple, PlaceType>*)(iter->second.get());
    } else {
      std::shared_ptr<void> cache =
          std::make_shared<KernelFuncs<KernelTuple, PlaceType>>();
      func_cache_map.emplace(key, cache);
      return *(KernelFuncs<KernelTuple, PlaceType>*)(cache.get());
    }
T
tensor-tang 已提交
201 202
  }

203
  // the exposed interface to use
204 205
  typename KernelTuple::func_type At(
      const typename KernelTuple::attr_type& attr) {
206 207
    // Maybe here is not good enough, not all kernels should have jitcode
    int64_t key = JitCodeKey<typename KernelTuple::attr_type>(attr);
T
tensor-tang 已提交
208 209 210
    if (Has(key)) {
      return funcs_.at(key);
    }
211 212
    // If do not have this attr in cache then get the default best
    auto func = GetDefaultBestFunc<KernelTuple, PlaceType>(attr);
T
tensor-tang 已提交
213 214 215 216
    Insert(key, func);
    return func;
  }

217 218
  typename KernelTuple::func_type operator[](
      const typename KernelTuple::attr_type& attr) {
219 220 221 222 223
    return At(attr);
  }

 protected:
  bool Has(int64_t key) const { return funcs_.find(key) != funcs_.end(); }
224
  void Insert(int64_t key, typename KernelTuple::func_type func) {
225 226 227
    funcs_.emplace(key, func);
  }

T
tensor-tang 已提交
228
 private:
229
  std::unordered_map<int64_t, typename KernelTuple::func_type> funcs_;
T
tensor-tang 已提交
230
  DISABLE_COPY_AND_ASSIGN(KernelFuncs);
T
tensor-tang 已提交
231 232
};

233
const char* to_string(KernelType kt);
234
const char* to_string(SeqPoolType kt);
235

T
tensor-tang 已提交
236 237
KernelType to_kerneltype(const std::string& act);

T
tensor-tang 已提交
238 239 240 241 242 243 244
inline std::ostream& operator<<(std::ostream& os, const lstm_attr_t& attr) {
  os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
     << "],act_cand[" << to_string(attr.act_cand) << "],act_cell["
     << to_string(attr.act_cell) << "],use_peephole["
     << (attr.use_peephole ? "True" : "False") << "]";
  return os;
}
245

T
tensor-tang 已提交
246 247 248 249 250
inline std::ostream& operator<<(std::ostream& os, const gru_attr_t& attr) {
  os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
     << "],act_cand[" << to_string(attr.act_cand) << "]";
  return os;
}
251

252 253 254 255 256
inline std::ostream& operator<<(std::ostream& os, const seq_pool_attr_t& attr) {
  os << "height_size[" << attr.h << "],width_size[" << attr.w << "],pool_type["
     << to_string(attr.type) << "]";
  return os;
}
T
tensor-tang 已提交
257

258 259 260 261 262 263 264 265 266
inline std::ostream& operator<<(std::ostream& os,
                                const emb_seq_pool_attr_t& attr) {
  os << "table_height[" << attr.table_height << "],table_width["
     << attr.table_width << "],index_height[" << attr.index_height
     << "],index_width[" << attr.index_width << "],output_width["
     << attr.out_width << "],pool_type[" << to_string(attr.pool_type) << "]";
  return os;
}

267 268 269 270 271 272 273 274
inline std::ostream& operator<<(std::ostream& os, const sgd_attr_t& attr) {
  os << "param_height[" << attr.param_height << "],param_width["
     << attr.param_width << "],grad_height[" << attr.grad_height
     << "],grad_width[" << attr.grad_width << "],selected_rows_size["
     << attr.selected_rows_size << "]";
  return os;
}

275 276 277 278 279 280 281 282 283
inline std::ostream& operator<<(std::ostream& os, const matmul_attr_t& attr) {
  os << "M[" << attr.m << "],N[" << attr.n << "],K[" << attr.k << "]";
  return os;
}

// expose the method to pack matmul weight
template <typename T>
void pack_weights(const T* src, T* dst, int n, int k);

T
tensor-tang 已提交
284 285 286
}  // namespace jit
}  // namespace operators
}  // namespace paddle