helper.h 7.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

17 18 19
extern "C" {
#include <xxhash.h>
}
T
tensor-tang 已提交
20
#include <iostream>
T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32
#include <string>
#include <vector>
#include "paddle/fluid/operators/jit/gen_base.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/operators/jit/kernel_key.h"
#include "paddle/fluid/operators/jit/kernel_pool.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace jit {

T
tensor-tang 已提交
33
template <KernelType KT, typename KernelTuples, typename PlaceType>
T
tensor-tang 已提交
34 35 36 37
inline typename std::enable_if<
    std::is_same<typename KernelTuples::data_type, float>::value &&
        std::is_same<PlaceType, platform::CPUPlace>::value,
    typename KernelTuples::func_type>::type
T
tensor-tang 已提交
38
GetJitCode(const typename KernelTuples::attr_type& attr) {
T
tensor-tang 已提交
39 40
  using Func = typename KernelTuples::func_type;
  using Attr = typename KernelTuples::attr_type;
T
tensor-tang 已提交
41 42 43 44 45 46
  size_t key = JitCodeKey<Attr>(attr);
  auto& codes = JitCodePool<KT>().Instance();
  if (codes.Has(key)) {
    return codes.AllKernels().at(key)->template getCode<Func>();
  }

T
tensor-tang 已提交
47
  // creator is not related with attr, so can use KernelKey as key
T
tensor-tang 已提交
48
  KernelKey kkey(KT, PlaceType());
T
tensor-tang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
  // pool: (KernelKey(type, place), vector<GenCreatorPtr>)
  auto& creator_map = JitCodeCreatorPool().Instance().AllCreators();
  auto iter = creator_map.find(kkey);
  if (iter != creator_map.end()) {
    auto& creators = iter->second;
    for (auto& cur : creators) {
      auto i = dynamic_cast<const JitCodeCreator<Attr>*>(cur.get());
      if (i && i->UseMe(attr)) {
        auto p = i->CreateJitCode(attr);
        if (p) {
          auto f = p->template getCode<Func>();
          codes.Insert(key, std::move(p));
          return f;
T
tensor-tang 已提交
62 63 64 65
        }
      }
    }
  }
T
tensor-tang 已提交
66 67 68
  return nullptr;
}

T
tensor-tang 已提交
69 70 71 72 73
template <KernelType KT, typename KernelTuples, typename PlaceType>
inline typename std::enable_if<
    !std::is_same<typename KernelTuples::data_type, float>::value ||
        !std::is_same<PlaceType, platform::CPUPlace>::value,
    typename KernelTuples::func_type>::type
T
tensor-tang 已提交
74
GetJitCode(const typename KernelTuples::attr_type& attr) {
T
tensor-tang 已提交
75 76 77
  return nullptr;
}

T
tensor-tang 已提交
78 79
// Refer code do not related with attr, which is just for cast
// Refer is always on CPUPlace
T
tensor-tang 已提交
80 81
template <KernelType KT, typename KernelTuples>
inline typename KernelTuples::func_type GetRefer() {
T
tensor-tang 已提交
82 83 84 85 86 87 88
  auto& ref_pool = ReferKernelPool().Instance().AllKernels();
  KernelKey kkey(KT, platform::CPUPlace());
  auto ref_iter = ref_pool.find(kkey);
  PADDLE_ENFORCE(ref_iter != ref_pool.end(),
                 "Every Kernel should have reference function.");
  auto& ref_impls = ref_iter->second;
  for (auto& impl : ref_impls) {
T
tensor-tang 已提交
89
    auto i = dynamic_cast<const ReferKernel<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
90 91 92 93 94 95 96
    if (i) {
      return i->GetFunc();
    }
  }
  return nullptr;
}

T
tensor-tang 已提交
97
template <KernelType KT, typename KernelTuples,
T
tensor-tang 已提交
98
          typename PlaceType = platform::CPUPlace>
T
tensor-tang 已提交
99 100
typename KernelTuples::func_type Get(
    const typename KernelTuples::attr_type& attr) {
T
tensor-tang 已提交
101
  auto jitfunc = GetJitCode<KT, KernelTuples, PlaceType>(attr);
T
tensor-tang 已提交
102 103 104
  if (jitfunc) {
    return jitfunc;
  }
T
tensor-tang 已提交
105 106

  // pool: (KernelKey(type, place), vector<KernelPtr>)
T
tensor-tang 已提交
107
  KernelKey kkey(KT, PlaceType());
T
tensor-tang 已提交
108 109 110 111 112
  auto& pool = KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
113
      auto i = dynamic_cast<const KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
114 115 116 117 118 119 120
      if (i && i->UseMe(attr)) {
        return i->GetFunc();
      }
    }
  }

  // The last implementation should be reference function on CPUPlace.
T
tensor-tang 已提交
121
  return GetRefer<KT, KernelTuples>();
T
tensor-tang 已提交
122 123
}

T
tensor-tang 已提交
124 125
template <KernelType KT, typename KernelTuples, typename PlaceType>
class KernelFuncs {
T
tensor-tang 已提交
126
 public:
T
tensor-tang 已提交
127 128 129
  KernelFuncs() = default;
  static KernelFuncs& Cache() {
    static thread_local KernelFuncs<KT, KernelTuples, PlaceType> g_func_cache;
T
tensor-tang 已提交
130 131 132
    return g_func_cache;
  }

133 134 135 136 137
  // the exposed interface to use
  typename KernelTuples::func_type At(
      const typename KernelTuples::attr_type& attr) {
    // XXH64: 13.8 GB/s
    int64_t key = XXH64(&attr, sizeof(typename KernelTuples::attr_type), 0);
T
tensor-tang 已提交
138 139 140
    if (Has(key)) {
      return funcs_.at(key);
    }
141 142 143 144
    // If do not have this attr in cache,
    // then could run some runtime benchmark of this attr and save the best one.
    // Here just get the offline benchmarked best one.
    auto func = Get<KT, KernelTuples, PlaceType>(attr);
T
tensor-tang 已提交
145 146 147 148
    Insert(key, func);
    return func;
  }

149 150 151 152 153 154 155 156 157 158 159 160
  typename KernelTuples::func_type operator[](
      const typename KernelTuples::attr_type& attr) {
    return At(attr);
  }

 protected:
  bool Has(int64_t key) const { return funcs_.find(key) != funcs_.end(); }

  void Insert(int64_t key, typename KernelTuples::func_type func) {
    funcs_.emplace(key, func);
  }

T
tensor-tang 已提交
161
 private:
162
  std::unordered_map<int64_t, typename KernelTuples::func_type> funcs_;
T
tensor-tang 已提交
163
  DISABLE_COPY_AND_ASSIGN(KernelFuncs);
T
tensor-tang 已提交
164 165
};

166
const char* to_string(KernelType kt);
167
const char* to_string(SeqPoolType kt);
168

T
tensor-tang 已提交
169 170
KernelType to_kerneltype(const std::string& act);

T
tensor-tang 已提交
171 172 173 174 175 176 177
inline std::ostream& operator<<(std::ostream& os, const lstm_attr_t& attr) {
  os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
     << "],act_cand[" << to_string(attr.act_cand) << "],act_cell["
     << to_string(attr.act_cell) << "],use_peephole["
     << (attr.use_peephole ? "True" : "False") << "]";
  return os;
}
178

T
tensor-tang 已提交
179 180 181 182 183
inline std::ostream& operator<<(std::ostream& os, const gru_attr_t& attr) {
  os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
     << "],act_cand[" << to_string(attr.act_cand) << "]";
  return os;
}
184

185 186 187 188 189
inline std::ostream& operator<<(std::ostream& os, const seq_pool_attr_t& attr) {
  os << "height_size[" << attr.h << "],width_size[" << attr.w << "],pool_type["
     << to_string(attr.type) << "]";
  return os;
}
T
tensor-tang 已提交
190

191 192 193 194 195 196 197 198 199
inline std::ostream& operator<<(std::ostream& os,
                                const emb_seq_pool_attr_t& attr) {
  os << "table_height[" << attr.table_height << "],table_width["
     << attr.table_width << "],index_height[" << attr.index_height
     << "],index_width[" << attr.index_width << "],output_width["
     << attr.out_width << "],pool_type[" << to_string(attr.pool_type) << "]";
  return os;
}

200 201 202 203 204 205 206 207
inline std::ostream& operator<<(std::ostream& os, const sgd_attr_t& attr) {
  os << "param_height[" << attr.param_height << "],param_width["
     << attr.param_width << "],grad_height[" << attr.grad_height
     << "],grad_width[" << attr.grad_width << "],selected_rows_size["
     << attr.selected_rows_size << "]";
  return os;
}

208 209 210 211 212 213 214 215 216
inline std::ostream& operator<<(std::ostream& os, const matmul_attr_t& attr) {
  os << "M[" << attr.m << "],N[" << attr.n << "],K[" << attr.k << "]";
  return os;
}

// expose the method to pack matmul weight
template <typename T>
void pack_weights(const T* src, T* dst, int n, int k);

T
tensor-tang 已提交
217 218 219
}  // namespace jit
}  // namespace operators
}  // namespace paddle