helper.h 9.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

T
tensor-tang 已提交
17
#include <iostream>
T
tensor-tang 已提交
18
#include <string>
19 20
#include <unordered_map>
#include <utility>  // for std::move
T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31
#include <vector>
#include "paddle/fluid/operators/jit/gen_base.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/operators/jit/kernel_key.h"
#include "paddle/fluid/operators/jit/kernel_pool.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace jit {

32
template <typename KernelTuple, typename PlaceType>
T
tensor-tang 已提交
33
inline typename std::enable_if<
34
    std::is_same<typename KernelTuple::data_type, float>::value &&
T
tensor-tang 已提交
35
        std::is_same<PlaceType, platform::CPUPlace>::value,
36
    const Kernel*>::type
37 38
GetJitCode(const typename KernelTuple::attr_type& attr) {
  using Attr = typename KernelTuple::attr_type;
39
  int64_t key = JitCodeKey<Attr>(attr);
40
  auto& codes = JitCodePool<KernelTuple::kernel_type>::Instance();
T
tensor-tang 已提交
41
  if (codes.Has(key)) {
42
    return codes.AllKernels().at(key).get();
T
tensor-tang 已提交
43 44
  }

T
tensor-tang 已提交
45
  // creator is not related with attr, so can use KernelKey as key
46
  KernelKey kkey(KernelTuple::kernel_type, PlaceType());
T
tensor-tang 已提交
47
  // pool: (KernelKey(type, place), vector<GenCreatorPtr>)
48
  auto& creator_map = JitCodeCreatorPool::Instance().AllCreators();
T
tensor-tang 已提交
49 50 51 52 53
  auto iter = creator_map.find(kkey);
  if (iter != creator_map.end()) {
    auto& creators = iter->second;
    for (auto& cur : creators) {
      auto i = dynamic_cast<const JitCodeCreator<Attr>*>(cur.get());
54
      if (i && i->CanBeUsed(attr)) {
T
tensor-tang 已提交
55 56
        auto p = i->CreateJitCode(attr);
        if (p) {
57
          auto res = p.get();
T
tensor-tang 已提交
58
          codes.Insert(key, std::move(p));
59
          return res;
T
tensor-tang 已提交
60 61 62 63
        }
      }
    }
  }
T
tensor-tang 已提交
64 65 66
  return nullptr;
}

67
template <typename KernelTuple, typename PlaceType>
T
tensor-tang 已提交
68
inline typename std::enable_if<
69
    !std::is_same<typename KernelTuple::data_type, float>::value ||
T
tensor-tang 已提交
70
        !std::is_same<PlaceType, platform::CPUPlace>::value,
71
    const Kernel*>::type
72
GetJitCode(const typename KernelTuple::attr_type& attr) {
T
tensor-tang 已提交
73 74 75
  return nullptr;
}

T
tensor-tang 已提交
76 77
// Refer code do not related with attr, which is just for cast
// Refer is always on CPUPlace
78
template <typename KernelTuple>
79 80
inline const Kernel* GetReferKernel() {
  auto& ref_pool = ReferKernelPool::Instance().AllKernels();
81
  KernelKey kkey(KernelTuple::kernel_type, platform::CPUPlace());
T
tensor-tang 已提交
82 83 84 85 86
  auto ref_iter = ref_pool.find(kkey);
  PADDLE_ENFORCE(ref_iter != ref_pool.end(),
                 "Every Kernel should have reference function.");
  auto& ref_impls = ref_iter->second;
  for (auto& impl : ref_impls) {
87
    auto i = dynamic_cast<const ReferKernel<KernelTuple>*>(impl.get());
T
tensor-tang 已提交
88
    if (i) {
89
      return i;
T
tensor-tang 已提交
90 91 92 93 94
    }
  }
  return nullptr;
}

95 96 97 98 99 100 101 102 103 104 105
template <typename KernelTuple>
inline typename KernelTuple::func_type GetReferFunc() {
  auto ker = GetReferKernel<KernelTuple>();
  auto p = dynamic_cast<const ReferKernel<KernelTuple>*>(ker);
  PADDLE_ENFORCE(p, "The Refer kernel should exsit");
  return p->GetFunc();
}

// Return all Kernels that can be used
template <typename KernelTuple, typename PlaceType>
std::vector<const Kernel*> GetAllCandidateKernels(
106
    const typename KernelTuple::attr_type& attr) {
107 108 109 110 111
  // the search order shoudl be jitcode > more > refer
  std::vector<const Kernel*> res;
  auto jitker = GetJitCode<KernelTuple, PlaceType>(attr);
  if (jitker) {
    res.emplace_back(jitker);
T
tensor-tang 已提交
112
  }
T
tensor-tang 已提交
113

114
  // more kernelpool: (KernelKey(type, place), vector<KernelPtr>)
115
  KernelKey kkey(KernelTuple::kernel_type, PlaceType());
116
  auto& pool = KernelPool::Instance().AllKernels();
T
tensor-tang 已提交
117 118 119 120
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
121
      auto i = dynamic_cast<const KernelMore<KernelTuple>*>(impl.get());
122 123
      if (i && i->CanBeUsed(attr)) {
        res.emplace_back(i);
T
tensor-tang 已提交
124 125 126 127 128
      }
    }
  }

  // The last implementation should be reference function on CPUPlace.
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  auto ref = GetReferKernel<KernelTuple>();
  PADDLE_ENFORCE(ref != nullptr, "Refer Kernel can not be empty.");
  res.emplace_back(ref);
  return res;
}

template <typename KernelTuple, typename PlaceType = platform::CPUPlace>
std::vector<std::pair<std::string, typename KernelTuple::func_type>>
GetAllCandidateFuncsWithTypes(const typename KernelTuple::attr_type& attr) {
  using Func = typename KernelTuple::func_type;
  auto kers = GetAllCandidateKernels<KernelTuple, PlaceType>(attr);
  std::vector<std::pair<std::string, Func>> res;
  for (auto k : kers) {
    std::string name = k->ImplType();
    if (name == "JitCode") {
      auto i = dynamic_cast<const GenBase*>(k);
      PADDLE_ENFORCE(i, "jitcode kernel cast can not fail.");
      res.emplace_back(std::make_pair(name, i->template getCode<Func>()));
    } else {
      auto i = dynamic_cast<const KernelMore<KernelTuple>*>(k);
      PADDLE_ENFORCE(i, "kernel cast can not fail.");
      res.emplace_back(std::make_pair(name, i->GetFunc()));
    }
  }
  return res;
}

template <typename KernelTuple, typename PlaceType = platform::CPUPlace>
std::vector<typename KernelTuple::func_type> GetAllCandidateFuncs(
    const typename KernelTuple::attr_type& attr) {
  auto funcs = GetAllCandidateFuncsWithTypes<KernelTuple, PlaceType>(attr);
  std::vector<typename KernelTuple::func_type> res;
  for (auto& i : funcs) {
    res.emplace_back(i.second);
  }
  return res;
}

template <typename KernelTuple, typename PlaceType = platform::CPUPlace>
typename KernelTuple::func_type GetDefaultBestFunc(
    const typename KernelTuple::attr_type& attr) {
  auto funcs = GetAllCandidateFuncs<KernelTuple, PlaceType>(attr);
  PADDLE_ENFORCE_GE(funcs.size(), 1UL);
  // Here could do some runtime benchmark of this attr and return the best one.
  // But yet just get the first one as the default best one,
  // which is searched in order and tuned by offline.
  return funcs[0];
T
tensor-tang 已提交
176 177
}

178
template <typename KernelTuple, typename PlaceType>
T
tensor-tang 已提交
179
class KernelFuncs {
T
tensor-tang 已提交
180
 public:
T
tensor-tang 已提交
181 182
  KernelFuncs() = default;
  static KernelFuncs& Cache() {
183
    static thread_local KernelFuncs<KernelTuple, PlaceType> g_func_cache;
T
tensor-tang 已提交
184 185 186
    return g_func_cache;
  }

187
  // the exposed interface to use
188 189
  typename KernelTuple::func_type At(
      const typename KernelTuple::attr_type& attr) {
190 191
    // Maybe here is not good enough, not all kernels should have jitcode
    int64_t key = JitCodeKey<typename KernelTuple::attr_type>(attr);
T
tensor-tang 已提交
192 193 194
    if (Has(key)) {
      return funcs_.at(key);
    }
195 196
    // If do not have this attr in cache then get the default best
    auto func = GetDefaultBestFunc<KernelTuple, PlaceType>(attr);
T
tensor-tang 已提交
197 198 199 200
    Insert(key, func);
    return func;
  }

201 202
  typename KernelTuple::func_type operator[](
      const typename KernelTuple::attr_type& attr) {
203 204 205 206 207
    return At(attr);
  }

 protected:
  bool Has(int64_t key) const { return funcs_.find(key) != funcs_.end(); }
208
  void Insert(int64_t key, typename KernelTuple::func_type func) {
209 210 211
    funcs_.emplace(key, func);
  }

T
tensor-tang 已提交
212
 private:
213
  std::unordered_map<int64_t, typename KernelTuple::func_type> funcs_;
T
tensor-tang 已提交
214
  DISABLE_COPY_AND_ASSIGN(KernelFuncs);
T
tensor-tang 已提交
215 216
};

217
const char* to_string(KernelType kt);
218
const char* to_string(SeqPoolType kt);
219

T
tensor-tang 已提交
220 221
KernelType to_kerneltype(const std::string& act);

T
tensor-tang 已提交
222 223 224 225 226 227 228
inline std::ostream& operator<<(std::ostream& os, const lstm_attr_t& attr) {
  os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
     << "],act_cand[" << to_string(attr.act_cand) << "],act_cell["
     << to_string(attr.act_cell) << "],use_peephole["
     << (attr.use_peephole ? "True" : "False") << "]";
  return os;
}
229

T
tensor-tang 已提交
230 231 232 233 234
inline std::ostream& operator<<(std::ostream& os, const gru_attr_t& attr) {
  os << "dim_size[" << attr.d << "],act_gate[" << to_string(attr.act_gate)
     << "],act_cand[" << to_string(attr.act_cand) << "]";
  return os;
}
235

236 237 238 239 240
inline std::ostream& operator<<(std::ostream& os, const seq_pool_attr_t& attr) {
  os << "height_size[" << attr.h << "],width_size[" << attr.w << "],pool_type["
     << to_string(attr.type) << "]";
  return os;
}
T
tensor-tang 已提交
241

242 243 244 245 246 247 248 249 250
inline std::ostream& operator<<(std::ostream& os,
                                const emb_seq_pool_attr_t& attr) {
  os << "table_height[" << attr.table_height << "],table_width["
     << attr.table_width << "],index_height[" << attr.index_height
     << "],index_width[" << attr.index_width << "],output_width["
     << attr.out_width << "],pool_type[" << to_string(attr.pool_type) << "]";
  return os;
}

251 252 253 254 255 256 257 258
inline std::ostream& operator<<(std::ostream& os, const sgd_attr_t& attr) {
  os << "param_height[" << attr.param_height << "],param_width["
     << attr.param_width << "],grad_height[" << attr.grad_height
     << "],grad_width[" << attr.grad_width << "],selected_rows_size["
     << attr.selected_rows_size << "]";
  return os;
}

259 260 261 262 263 264 265 266 267
inline std::ostream& operator<<(std::ostream& os, const matmul_attr_t& attr) {
  os << "M[" << attr.m << "],N[" << attr.n << "],K[" << attr.k << "]";
  return os;
}

// expose the method to pack matmul weight
template <typename T>
void pack_weights(const T* src, T* dst, int n, int k);

T
tensor-tang 已提交
268 269 270
}  // namespace jit
}  // namespace operators
}  // namespace paddle