io.py 60.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import numpy as np

19
import paddle
20 21 22
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
23
from paddle.fluid import unique_name
24 25
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
26
from paddle.fluid.layers.utils import _hash_with_id
27
from paddle.fluid.dygraph.base import switch_to_static_graph
J
Jiabin Yang 已提交
28
from paddle.fluid.framework import _non_static_mode
29 30 31 32 33 34 35 36
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
from paddle.fluid.dygraph.dygraph_to_static.partial_program import (
    add_build_strategy_for,
    LazyInitialized,
)
37
from paddle import _C_ops, _legacy_C_ops
38 39 40

__all__ = ['TranslatedLayer']

41 42 43
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
44
INFER_PROPERTY_SUFFIX = '.meta'
45

46 47 48
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
49 50 51 52 53 54 55 56 57


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
58 59 60
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
61 62 63 64 65

    return program_desc


def _is_persistable(var_desc):
66 67 68 69 70 71
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
72 73 74 75 76 77 78
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
79
    for block_idx in range(program_desc.num_blocks()):
80
        block = program_desc.block(block_idx)
81
        for op_idx in range(block.op_size()):
82 83 84 85 86
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
87
    for block_idx in range(program_desc.num_blocks()):
88
        block = program_desc.block(block_idx)
89
        for op_idx in range(block.op_size()):
90 91 92 93 94 95 96 97 98 99 100 101
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
102
    for i in range(program_desc.num_blocks()):
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
121
    for i in range(program_desc.num_blocks()):
122 123 124 125 126 127
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


128
@switch_to_static_graph
129 130 131
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
132
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
133
    """
134 135 136
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
137 138


139 140 141
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
142 143 144


def _append_loaded_suffix_to_var(program_desc):
145
    suffix_varname_dict = dict()
146 147 148 149
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
150
        suffix_varname_dict[new_name] = old_name
151
        var_desc.set_name(new_name)
152
        for block_idx in range(program_desc.num_blocks()):
153
            block = program_desc.block(block_idx)
154
            block._rename_var(old_name.encode(), new_name.encode())
155
            for op_idx in range(block.op_size()):
156 157 158
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
159
    return suffix_varname_dict
160 161


162 163 164 165 166 167 168 169 170 171 172 173 174 175
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
176
def _rename_var_program_desc(program_desc, include=None, exclude=None):
177
    """
178 179 180 181 182 183 184 185
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
186 187 188 189 190

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
191 192 193 194 195

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
196 197 198 199
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
200
    # Store all old names
201
    for b_idx in range(program_desc.num_blocks()):
202 203 204
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
205 206 207 208

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
209
    for b_idx in range(program_desc.num_blocks()):
210 211 212
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
213 214
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
215 216 217 218 219
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
220
            if should_rename:
221 222 223 224
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
225 226 227
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
228 229 230 231 232 233
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
234 235 236
                        break
            else:
                name_new = name_old
237
            if name_old != name_new:
238
                cur_block._rename_var(name_old.encode(), name_new.encode())
239 240 241 242 243 244 245 246
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
247
            for b_idx in range(program_desc.num_blocks()):
248 249 250 251 252
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
253 254
                            name_old, dict_rename_var_old_new[name_old]
                        )
255 256 257
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
258 259
                var_name
            ]
260
            dict_rename_var_new_old[
261 262
                double_grad_rename_dict[var_name]
            ] = var_name
263 264

    # Rename on program desc
265
    for b_idx in range(program_desc.num_blocks()):
266
        cur_block = program_desc.block(b_idx)
267
        for op_idx in range(cur_block.op_size()):
268 269 270
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
271 272 273 274
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
275 276
                        op._rename_input(
                            input_arg_name,
277 278
                            dict_rename_var_old_new[input_arg_name],
                        )
279
                        if cur_block.has_var(input_arg_name.encode()):
280
                            cur_block._rename_var(
281
                                input_arg_name.encode(),
282 283 284 285
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
286 287
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
288 289 290 291
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
292 293
                        op._rename_output(
                            output_arg_name,
294 295
                            dict_rename_var_old_new[output_arg_name],
                        )
296
                        if cur_block.has_var(output_arg_name.encode()):
297
                            cur_block._rename_var(
298
                                output_arg_name.encode(),
299 300 301 302
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
303 304 305 306
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


307 308 309 310 311
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
312
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
313 314 315 316 317 318 319
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
320
    for i in range(program_desc.num_blocks()):
321
        block = program_desc.block(i)
322
        for j in range(block.op_size()):
323 324 325 326 327
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


328
class _ProgramHolder:
329 330 331
    """
    Holds the execution information of a Program.

332 333
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
334 335 336 337 338 339
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
340
        super().__init__()
341

342
        # input, output, persistable, double_grads var info
343
        self._input_descs = []
344
        self._output_descs = []
345
        self._double_grad_descs = []
346
        self._persistable_names = []
347 348 349 350

        # execution scope
        self._inner_scope = core.Scope()

351 352
        # append suffix var name dict
        self._suffix_varname_dict = None
353 354 355 356
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
357 358
            self._infer_program_desc
        )
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
379 380
            self._output_descs
        )
381
        end_op_index = whole_program.desc.block(0).op_size()
382 383 384 385
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
386 387 388 389 390 391 392
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

393 394 395 396 397 398 399 400
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

401 402 403 404 405 406 407 408
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

409
    @property
410 411
    def input_descs(self):
        return self._input_descs
412 413

    @property
414
    def output_descs(self):
415 416 417 418 419 420
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

421 422 423 424
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

425 426 427 428 429
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
430 431
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
432
        rename_new_old_dict, _ = _rename_var_program_desc(
433 434
            program_desc, list_persistable_var
        )
435 436 437 438
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
439
        for i in range(root_block.op_size()):
440 441 442
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
443
                feed_var_name = op.input('X')[0].encode()
444
                root_block._remove_var(feed_var_name)
445
                self._input_descs.append(
446 447
                    root_block.find_var(op.output('Out')[0].encode())
                )
448
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
449 450
                'save_infer_model/scale_'
            ):
451
                ops_to_remove.append(i)
452
                out_var_name = op.output('Out')[0].encode()
453 454
                root_block._remove_var(out_var_name)
                self._output_descs.append(
455 456
                    root_block.find_var(op.input('X')[0].encode())
                )
457 458
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
459
                fetch_var_name = op.output('Out')[0].encode()
460 461 462 463
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
464 465
                        root_block.find_var(op.input('X')[0].encode())
                    )
466 467 468 469 470 471 472
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

473 474 475 476 477 478
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

479
        # 2. Input processing, reverse feed vars
480
        self._input_descs.reverse()
481 482 483 484

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
485 486 487 488 489
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
490
        # use, multiple outputs may be associated with multiple branches.
491 492 493 494
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
495 496 497 498 499
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
500
        # - append loaded suffix to persistable vars
501
        # NOTE: [why need to append suffix to persistable vars]
502 503 504 505 506 507
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
508
        # to add the LOADED suffix to the parameters of the model loaded
509
        self._suffix_varname_dict = _get_loaded_var_new_old(
510 511
            program_desc, rename_new_old_dict
        )
512

513 514 515 516 517 518 519 520 521 522 523 524
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
525 526 527
                var = nn.scale(
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
528 529 530 531 532 533
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
534
    def _get_train_forward_program(self, infer_program_desc):
535 536 537 538 539 540 541 542
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
543
        # rewrite a series of methods for append_backward for program_desc.
544 545
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
546 547
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
548
        for block_idx in range(program.num_blocks):
549 550 551
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
552 553 554 555
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
556 557
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
558 559
                                ".".join(["reserve_space", 'tmp'])
                            ),
560 561 562
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
563 564
                            stop_gradient=True,
                        )
565
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
566 567 568 569 570
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
571

572 573 574 575 576 577 578 579 580 581
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
582
#
583 584 585 586 587 588 589
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
590
#
591 592 593
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
594
# 1. Data Sharing:
595 596 597 598
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
599
#
600 601 602 603
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
604
#   We can not separate the program into forward and backward part, which will
605 606 607 608 609
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
610 611 612
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
613 614 615 616
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
617
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
618 619
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
620
            if framework._in_eager_without_dygraph_check():
621 622 623 624 625 626 627
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
628
            else:
629 630 631 632 633 634 635
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
636
        else:
637 638 639 640 641 642 643
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
644 645 646 647 648
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
649 650
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
651 652 653 654 655
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
656
        dict_name_old_new = {
657
            v: k for k, v in program_holder._suffix_varname_dict.items()
658 659 660
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
661 662 663 664 665

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
666 667
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
668 669 670 671 672 673 674 675

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
676
    # After loading the model, the stop_gradient information
677 678 679 680 681 682 683 684 685 686 687 688
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


689 690 691
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
692 693
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
694
        extra_var_info = pickle.load(f)
695 696 697 698

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
699
    inv_suffix_varname_dict = {
700
        value: key for key, value in program_holder._suffix_varname_dict.items()
701
    }
702 703 704

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
705
    # var in `extra_var_info` may have been pruned
706 707 708 709 710
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
711 712
                name,
            )
713 714
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
715 716 717
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
718
            if framework._in_eager_without_dygraph_check():
719 720 721 722 723 724
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
725 726
                    persistable=True,
                )
727 728 729 730 731 732 733
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
734 735
                    persistable=True,
                )
736
        else:
737 738 739
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
740 741 742 743 744 745

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
746 747 748 749 750 751
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
752 753 754 755 756 757
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
758 759 760 761

    return load_var_dict


762 763 764 765 766 767 768 769 770
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


771 772 773 774 775 776 777 778
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
779 780
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
781 782 783 784 785
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
786 787 788 789 790
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
791 792 793 794 795
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
796 797 798
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
799 800
                _load_program_desc(model_file_path)
            )
801 802 803 804 805 806 807 808 809 810 811
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
812 813
                        _load_program_desc(model_file_path)
                    )
814 815 816 817

    return program_holder_dict


818 819 820
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
821 822
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
823
    params_path = os.path.join(model_path, str(params_filename))
824

825
    if os.path.exists(var_info_path):
826 827 828 829 830
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
831
        for file_name in os.listdir(model_path):
832
            if file_name.startswith(model_name) and file_name.endswith(
833 834 835 836 837
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
838 839 840 841
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
842 843 844 845
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
846 847 848 849
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
850 851 852
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
853
    else:
854 855 856
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
857 858 859 860

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

861 862 863
    return var_dict


0
0x45f 已提交
864 865 866
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
867
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
868
        return [
869 870 871 872 873 874 875
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
876 877 878
        ]
    else:
        return [
879 880 881 882 883 884 885
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
886 887 888
        ]


W
WeiXin 已提交
889 890 891 892 893
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
894
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
895 896
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
897 898
                % type(value)
            )
W
WeiXin 已提交
899 900
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
901
            if framework._in_eager_without_dygraph_check():
902 903 904 905 906
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
907 908
                    zero_copy=True,
                )
909
            else:
910 911 912 913 914 915 916
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
917 918
        else:
            var = value
919
            # NOTE: we changed var name here,
W
WeiXin 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
938 939
                % var_name
            )
W
WeiXin 已提交
940 941 942

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
943
        if framework._in_eager_without_dygraph_check():
944 945 946 947 948 949 950
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
951
        else:
952 953 954 955 956 957 958
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
959 960 961
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
962
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
963
        tmp_scope_vec = [program_holder.scope]
964
    else:
965 966 967 968 969 970 971
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
972
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
973

974 975
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
976
        if framework._in_eager_without_dygraph_check():
977 978 979 980 981 982 983
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
984
        else:
985 986 987 988 989 990 991
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
992 993
        double_grad_vars.append(var)

W
WeiXin 已提交
994
    # 2. run program by op
995 996 997 998 999 1000 1001 1002 1003 1004
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1005
    end_op_index = program_holder.infer_program.block(0).op_size()
1006 1007 1008

    attrs = [
        'global_block',
1009 1010 1011 1012 1013 1014 1015 1016 1017
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
        _hash_with_id(trace_program, instance),
1018 1019
    ]

1020 1021 1022 1023
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1024 1025 1026
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1044

W
WeiXin 已提交
1045 1046 1047 1048 1049 1050 1051 1052
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1053
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1054
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1055
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1072 1073
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1074 1075 1076
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1077 1078 1079 1080 1081 1082 1083
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1084
    main_program._sync_with_cpp()
1085 1086 1087
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1088 1089 1090 1091 1092 1093 1094 1095
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1096

W
WeiXin 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1115 1116 1117 1118 1119 1120 1121
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1122 1123
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1124

W
WeiXin 已提交
1125 1126 1127 1128 1129
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1130
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1131 1132 1133 1134
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1135 1136 1137 1138 1139 1140 1141 1142
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1143 1144 1145 1146 1147

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1148 1149 1150 1151
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1152 1153 1154 1155 1156 1157
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1158 1159
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1160 1161

    append_ops = append_op_from_block_desc_static(
1162 1163
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1177 1178 1179
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1180
            append_ops += append_op_from_block_desc_static(
1181 1182
                dest_block, src_block
            )
W
WeiXin 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1192 1193 1194
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1195 1196 1197 1198
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1199 1200 1201
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1250 1251 1252 1253 1254 1255 1256 1257
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1258 1259 1260 1261
    block.ops.append(op)
    return op


1262 1263 1264
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1283 1284
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1285 1286 1287
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1288 1289 1290
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1291 1292 1293 1294 1295 1296 1297
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1298 1299
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1300 1301 1302 1303 1304
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1305 1306 1307 1308 1309
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1310
            vars_append.append(
1311
                current_block.create_var(
W
WeiXin 已提交
1312 1313 1314 1315 1316 1317
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1318 1319 1320
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1321 1322 1323
    return vars_append


1324 1325
class TranslatedLayer(layers.Layer):
    """
1326 1327
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1328
    general Layer object in eval or train mode.
1329

1330
    .. note:
1331
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1332 1333 1334 1335 1336

    Examples:
        .. code-block:: python

            import numpy as np
1337 1338 1339
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1340

1341 1342 1343
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1344

1345 1346 1347 1348 1349 1350 1351
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1352

1353 1354 1355 1356
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1357

1358 1359
                def __len__(self):
                    return self.num_samples
1360

1361 1362
            class LinearNet(nn.Layer):
                def __init__(self):
1363
                    super().__init__()
1364
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1365

1366
                @paddle.jit.to_static
1367 1368 1369
                def forward(self, x):
                    return self._linear(x)

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1381 1382
            # 1. train & save model.

1383 1384 1385 1386
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1387

1388 1389 1390 1391 1392 1393 1394
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1395

1396 1397
            # train
            train(layer, loader, loss_fn, adam)
1398

1399
            # save
1400
            model_path = "linear.example.model"
1401
            paddle.jit.save(layer, model_path)
1402 1403

            # 2. load model as TranslatedLayer
1404 1405 1406 1407

            # load
            translated_layer = paddle.jit.load(model_path)

1408 1409
            # inference
            translated_layer.eval()
1410
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1411
            pred = translated_layer(x)
1412

1413 1414
            # fine-tune
            translated_layer.train()
1415 1416
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1417 1418 1419 1420

    """

    def __init__(self, programs, persistable_vars):
1421
        super().__init__()
1422 1423 1424 1425 1426 1427 1428

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1429
                "TranslatedLayer need to use persistable variable dict for initialization."
1430 1431 1432 1433
            )

        self._program_holder_dict = programs

1434 1435 1436 1437 1438 1439 1440 1441
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1442 1443 1444
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1445 1446 1447
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1448 1449 1450
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1451
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1452 1453 1454 1455 1456 1457 1458
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1459 1460

        self._is_test = True
W
WeiXin 已提交
1461
        self._input_args_names = None
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1479
        # 2. load layer parameters & buffers
1480
        persistable_vars = _construct_params_and_buffers(
1481 1482
            model_path, programs, params_filename
        )
1483 1484 1485 1486 1487 1488

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1489 1490 1491 1492
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1493
            setattr(
1494 1495
                TranslatedLayer,
                method_name,
1496
                TranslatedLayer._execution_method_creator(
1497 1498 1499
                    method_name, program_holder
                ),
            )
1500 1501 1502 1503 1504 1505 1506 1507

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1508 1509 1510 1511
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1512
            if _non_static_mode():
W
WeiXin 已提交
1513 1514 1515 1516 1517 1518 1519
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1520 1521
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1522 1523 1524 1525
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1526 1527 1528

    def train(self):
        self._is_test = False
1529
        self.training = True
1530 1531 1532

    def eval(self):
        self._is_test = True
1533
        self.training = False
1534 1535 1536 1537 1538 1539 1540 1541

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1542

1543 1544 1545 1546 1547
        Returns:
            Program

        Examples:
            .. code-block:: python
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
1576
                        super().__init__()
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1621
        program_holder = self._get_program_holder(method_name)
1622 1623 1624 1625 1626 1627 1628

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1629 1630 1631 1632 1633

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1634 1635 1636
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1637 1638 1639 1640 1641 1642 1643 1644 1645
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1646 1647 1648 1649 1650
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1662 1663
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1664
            # construct the description of Output tensor
1665 1666 1667 1668 1669
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1670 1671 1672
            output_spec.append(spec)

        return output_spec