io.py 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import six
import pickle
import numpy as np

from paddle import compat as cpt
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
from paddle.fluid.dygraph.base import switch_to_static_graph

__all__ = ['TranslatedLayer']

VARIABLE_FILENAME = "__variables__"
EXTRA_VAR_INFO_FILENAME = "__variables.info__"


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
        raise ValueError("Unsupported program version: %d\n" %
                         program_desc._version())

    return program_desc


def _is_persistable(var_desc):
    if var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var_desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var_desc.type() == core.VarDesc.VarType.READER or \
            var_desc.type() == core.VarDesc.VarType.RAW:
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
    e.g. x ==> x@LOADED
    """
    suffix = core.loaded_var_suffix()
    name = cpt.to_text(name)
    if suffix not in name:
        name = name + suffix
    return name


def _remove_loaded_suffix(name):
    """
    Remove loaded suffix to the given variable name
    e.g. x@LOADED ==> x
    """
    suffix = core.loaded_var_suffix()
    name = cpt.to_text(name)
    return name.replace(suffix, '')


def _append_loaded_suffix_to_var(program_desc):
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
        var_desc.set_name(new_name)
        for block_idx in six.moves.range(program_desc.num_blocks()):
            block = program_desc.block(block_idx)
            for op_idx in six.moves.range(block.op_size()):
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
        framework.Block(prog, i)
        for i in six.moves.range(prog.desc.num_blocks())
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for j in six.moves.range(block.op_size()):
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


class _ProgramHolder(object):
    """
    Holds the execution information of a Program.

    _ProgramHolder is the execution unit of TranslatedLayer, 
    if TranslatedLayer contains multiple _ProgramHolder, 
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
        super(_ProgramHolder, self).__init__()

        # input, output, persistable var info
        self._input_names = []
        self._persistable_names = []
        self._output_descs = []

        # execution scope
        self._inner_scope = core.Scope()

        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
            self._infer_program_desc)

    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

    @property
    def input_names(self):
        return self._input_names

    @property
    def output_decs(self):
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
        for i in six.moves.range(root_block.op_size()):
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
                feed_var_name = cpt.to_bytes(op.input('X')[0])
                root_block._remove_var(feed_var_name)
                self._input_names.append(cpt.to_bytes(op.output('Out')[0]))
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
                    'save_infer_model/scale_'):
                ops_to_remove.append(i)
                out_var_name = cpt.to_bytes(op.output('Out')[0])
                root_block._remove_var(out_var_name)
                self._output_descs.append(
                    root_block.find_var(cpt.to_bytes(op.input('X')[0])))
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
                fetch_var_name = cpt.to_bytes(op.output('Out')[0])
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
                        root_block.find_var(cpt.to_bytes(op.input('X')[0])))
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

        # 2. Input processing, reverse feed vars
        self._input_names.reverse()

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
        # When dealing with some more complex pre-training models, there 
        # will be situations where the pre-training model has multiple 
        # fetch outputs. In the scenario of multiple fetch outputs, 
        # there is a special case where multiple outputs of the model 
        # may be on the same branch. According to the user's subsequent 
        # use, multiple outputs may be associated with multiple branches.
        # These subsequent operations are added in TranslatedLayer is 
        # agnostic during initialization, which results in subsequent 
        # gradient accumulation operations that are required on the 
        # output node in the middle of the branch will not be performed, 
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
        # - append @LOADED suffix to persistable vars
        # NOTE: [why need to append suffix to persistable vars]
        # Dygraph and static graph mode use the same naming mechanism. 
        # If users want to load the model fine-tune, it is possible 
        # to add the existing Layer in the loaded model to enhance 
        # the network. For example, the original saved model has linear, 
        # and later after loading, a new linear is added. At this time, 
        # there will be a problem of duplicate names, so here is unified 
        # to add the LOADED suffix to the parameters of the model loaded
        # during training. And in order to avoid multiple @LOADED suffix
        # are appended to variable name, we only append @LOADED suffix to
        # the variable that not contains @LOADED suffix.
        _append_loaded_suffix_to_var(program_desc)
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
                var = nn.scale(
                    var, 1., name="static_model_runner/scale_{}".format(i))
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
        # rewrite a series of methods for append_backward for program_desc. 
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)

        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
# 
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
# 
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
# 1. Data Sharing: 
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
# 
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
#   We can not separate the program into forward and backward part, which will 
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
def _load_persistable_vars_by_program(model_path,
                                      program_holder,
                                      params_filename=None):
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
        orig_each_name = _remove_loaded_suffix(each_var.name())
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
            new_var = framework.ParamBase(
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                name=each_var.name(),
                type=each_var.type(),
                persistable=True)
        else:
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shpae=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True)
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, orig_each_name)})
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
        for name in sorted(load_var_dict.keys()):
            load_var_list.append(load_var_dict[name])

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': os.path.join(model_path, params_filename)})

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
    # After loading the model, the stop_gradient information 
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


def _load_persistable_vars(model_path,
                           var_info_path,
                           separate_params=False,
                           params_filename=None):
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
428
        extra_var_info = pickle.load(f)
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
    # NOTE: some var may not be Parameter
    for name in sorted(extra_var_info):
        # append suffix, see [why need to append suffix to persistable vars]
        new_name = _append_loaded_suffix(name)
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
            new_var = framework.ParamBase(
                shape=[1],  # only to pass check, this shape is not meaningful
                dtype=core.VarDesc.VarType.FP32,
                name=new_name,
                persistable=True)
        else:
            new_var = framework._varbase_creator(
                name=new_name, persistable=True)

        # load separate vars
        if separate_params is True:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
    if separate_params is False:
        if params_filename is not None:
            var_file_path = os.path.join(model_path, params_filename)
        else:
            var_file_path = os.path.join(model_path, VARIABLE_FILENAME)
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path})

    return load_var_dict


def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
        program_holder_dict['forward'] = _ProgramHolder(
            _load_program_desc(model_file_path))
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
                        _load_program_desc(model_file_path))

    return program_holder_dict


def _construct_params_and_buffers(model_path,
                                  programs,
                                  separate_params=False,
                                  params_filename=None):
    var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
    if os.path.exists(var_info_path):
        var_dict = _load_persistable_vars(model_path, var_info_path,
                                          separate_params, params_filename)
    else:
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename)
    return var_dict


class TranslatedLayer(layers.Layer):
    """
    TranslatedLayer is a imperative Layer for holding the model loaded by 
    :ref:`api_imperative_jit_load` . It can be used like a general Layer 
    object in eval or train mode.
    
    .. note:
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_imperative_jit_load` .

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from paddle.fluid.dygraph import Linear
            from paddle.fluid.dygraph import declarative

            BATCH_SIZE = 32
            BATCH_NUM = 20

            def random_batch_reader():
                def _get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                def __reader__():
                    for _ in range(BATCH_NUM):
                        batch_image, batch_label = _get_random_images_and_labels(
                            [BATCH_SIZE, 784], [BATCH_SIZE, 1])
                        yield batch_image, batch_label

                return __reader__

            class LinearNet(fluid.dygraph.Layer):
                def __init__(self, in_size, out_size):
                    super(LinearNet, self).__init__()
                    self._linear = Linear(in_size, out_size)

                @declarative
                def forward(self, x):
                    return self._linear(x)

            # enable dygraph mode
            fluid.enable_dygraph() 

            # 1. train & save model.
            # create network
            net = LinearNet(784, 1)
            adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=net.parameters())
            # create data loader
            train_loader = fluid.io.DataLoader.from_generator(capacity=5)
            train_loader.set_batch_generator(random_batch_reader())
            # train
            for data in train_loader():
                img, label = data
                label.stop_gradient = True

                cost = net(img)

                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)

                avg_loss.backward()
                adam.minimize(avg_loss)
                net.clear_gradients()

            model_path = "linear.example.model"
            fluid.dygraph.jit.save(
                layer=net,
                model_path=model_path,
                input_spec=[img])

            # 2. load model as TranslatedLayer
            translated_layer = fluid.dygraph.jit.load(model_path)
            # inference
            translated_layer.eval()
            x = fluid.dygraph.to_variable(np.random.random((1, 784)).astype('float32'))
            pred = translated_layer(x)
            # fine-tune
            translated_layer.train()
            adam = fluid.optimizer.AdamOptimizer(learning_rate=0.1, parameter_list=translated_layer.parameters())
            train_loader = fluid.io.DataLoader.from_generator(capacity=5)
            train_loader.set_batch_generator(random_batch_reader())
            for data in train_loader():
                img, label = data
                label.stop_gradient = True

                cost = translated_layer(img)

                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)

                avg_loss.backward()
                adam.minimize(avg_loss)
                translated_layer.clear_gradients()
    """

    def __init__(self, programs, persistable_vars):
        super(TranslatedLayer, self).__init__()

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
                "TranslatedLayer need to use persisatbale variable dict for initialization."
            )

        self._program_holder_dict = programs

        for name, var in persistable_vars.items():
            if isinstance(var, framework.ParamBase):
                self.add_parameter(name, var)
            elif isinstance(var, core.VarBase):
                self.register_buffer(name, var)
            else:
                raise TypeError(
                    "Adding persistent variable which  to layer is not supported now"
                )

        self._is_test = True

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        separate_params = False
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename
            separate_params = configs.separate_params

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

        # 2. load layer parameters & parameter attirbutes
        persistable_vars = _construct_params_and_buffers(
            model_path, programs, separate_params, params_filename)

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
            setattr(TranslatedLayer, method_name,
                    TranslatedLayer._execution_method_creator(method_name,
                                                              program_holder))

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
        def __impl__(self, *input):
            # 1. prepare inputs, outputs, attrs
            input_vars = []
            for i, value in enumerate(input):
                if not isinstance(value, (np.ndarray, core.VarBase)):
                    raise TypeError(
                        "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
                        % type(value))
                # NOTE: In order to unify the API, firstly convert the input to VarBase
                if isinstance(value, np.ndarray):
                    var = core.VarBase(
                        value=value,
                        name=program_holder.input_names[i],
                        persistable=False,
                        place=framework._current_expected_place(),
                        zero_copy=True)
                else:
                    var = value
                    # NOTE: we changed var name here, 
                    # but it may be an important name set by user
                    var.name = program_holder.input_names[i]
                input_vars.append(var)

            persistable_vars = []
            for var_name in program_holder.persistable_names:
                if var_name in self._parameters:
                    persistable_vars.append(self._parameters[var_name])
                elif var_name in self._buffers:
                    persistable_vars.append(self._buffers[var_name])
                else:
                    raise ValueError(
                        "The persistable variable %s is not exists in current TranslatedLayer."
                        % var_name)

            output_vars = []
            for var_desc in program_holder.output_decs:
                var = core.VarBase(var_desc.dtype(),
                                   var_desc.shape(),
                                   var_desc.name(), var_desc.type(), False)
                output_vars.append(var)

            # hold forward variables
            tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                         "program_out_scope",
                                         core.VarDesc.VarType.STEP_SCOPES, True)
            tmp_scope_vec.value().set_scope(program_holder.scope)

            # 2. run prorgam by op
            trace_program = program_holder.infer_program if self._is_test else program_holder.train_program
            end_op_index = program_holder.infer_program.block(0).op_size()
            framework._dygraph_tracer().trace_op(
                type='run_program',
                inputs={'X': input_vars,
                        'Params': persistable_vars},
                outputs={'Out': output_vars,
                         'OutScope': tmp_scope_vec},
                attrs={
                    'global_block': trace_program.block(0),
                    'start_op_index': 0,
                    'end_op_index': end_op_index,
                    'is_test': self._is_test
                })

            # NOTE: [ why need set param's gradient type here ]
            # if user set sparse gradient mode, the param's gradient
            # will be SelectedRows, not LoDTensor. But tracer will just
            # set param grad VarBase by forward VarBase(LoDTensor)
            # If we don't change grad_var type here, RunProgramOp need
            # transform SelectedRows to LoDTensor forcely, it may not
            # be user wanted result.
            for persistable_var in persistable_vars:
                grad_var_name = var.name + core.grad_var_suffix()
                grad_var = trace_program.block(0).find_var(
                    cpt.to_bytes(grad_var_name))
                # NOTE: cannot find var desc maybe not problem, 
                # such as in batch_norm
                if grad_var is None:
                    continue
                persistable_var._set_grad_type(grad_var.type())

            # 3. prepare output, keep same form with inputs
            outs = output_vars
            if len(output_vars) == 1:
                outs = output_vars[0]
            return outs

        __impl__.__name__ = method_name
        return __impl__

    def train(self):
        self._is_test = False

    def eval(self):
        self._is_test = True