io.py 60.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import numpy as np

19
import paddle
20 21 22 23
from paddle import compat as cpt
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
24
from paddle.fluid import unique_name
25 26
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
27
from paddle.fluid.layers.utils import _hash_with_id
28
from paddle.fluid.dygraph.base import switch_to_static_graph
J
Jiabin Yang 已提交
29
from paddle.fluid.framework import _non_static_mode
30 31
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
from paddle.fluid.dygraph.dygraph_to_static.partial_program import add_build_strategy_for, LazyInitialized
32
from paddle import _C_ops, _legacy_C_ops
33 34 35

__all__ = ['TranslatedLayer']

36 37 38
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
39
INFER_PROPERTY_SUFFIX = '.meta'
40

41 42 43
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
        raise ValueError("Unsupported program version: %d\n" %
                         program_desc._version())

    return program_desc


def _is_persistable(var_desc):
    if var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var_desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var_desc.type() == core.VarDesc.VarType.READER or \
            var_desc.type() == core.VarDesc.VarType.RAW:
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
71
    for block_idx in range(program_desc.num_blocks()):
72
        block = program_desc.block(block_idx)
73
        for op_idx in range(block.op_size()):
74 75 76 77 78
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
79
    for block_idx in range(program_desc.num_blocks()):
80
        block = program_desc.block(block_idx)
81
        for op_idx in range(block.op_size()):
82 83 84 85 86 87 88 89 90 91 92 93
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
94
    for i in range(program_desc.num_blocks()):
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
113
    for i in range(program_desc.num_blocks()):
114 115 116 117 118 119
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


120
@switch_to_static_graph
121 122 123
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
124
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
125
    """
126 127 128
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
129 130


131 132 133
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
134 135 136


def _append_loaded_suffix_to_var(program_desc):
137
    suffix_varname_dict = dict()
138 139 140 141
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
142
        suffix_varname_dict[new_name] = old_name
143
        var_desc.set_name(new_name)
144
        for block_idx in range(program_desc.num_blocks()):
145
            block = program_desc.block(block_idx)
146
            block._rename_var(old_name.encode(), new_name.encode())
147
            for op_idx in range(block.op_size()):
148 149 150
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
151
    return suffix_varname_dict
152 153


154 155 156 157 158 159 160 161 162 163 164 165 166 167
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
168
def _rename_var_program_desc(program_desc, include=None, exclude=None):
169
    """
170 171 172 173 174 175 176 177
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
178 179 180 181 182

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
183 184 185 186 187

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
188 189 190 191
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
192
    # Store all old names
193
    for b_idx in range(program_desc.num_blocks()):
194 195 196
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
197 198 199 200

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
201
    for b_idx in range(program_desc.num_blocks()):
202 203 204
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
205 206
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
W
WeiXin 已提交
207
            should_rename = (include is None or name_old in include) and (
208 209
                exclude is None
                or name_old not in exclude) and not is_double_grad_var
W
WeiXin 已提交
210
            if should_rename:
211 212 213 214
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
215 216 217 218 219 220 221 222 223
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
                        temp_name)
                    if name_new not in old_names[:var_idx] + old_names[var_idx +
                                                                       1:]:
                        break
            else:
                name_new = name_old
224
            if name_old != name_new:
225
                cur_block._rename_var(name_old.encode(), name_new.encode())
226 227 228 229 230 231 232 233
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
234
            for b_idx in range(program_desc.num_blocks()):
235 236 237 238 239 240 241 242 243 244
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
                            name_old, dict_rename_var_old_new[name_old])
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
                var_name]
245 246
            dict_rename_var_new_old[
                double_grad_rename_dict[var_name]] = var_name
247 248

    # Rename on program desc
249
    for b_idx in range(program_desc.num_blocks()):
250
        cur_block = program_desc.block(b_idx)
251
        for op_idx in range(cur_block.op_size()):
252 253 254
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
255
                    if input_arg_name != dict_rename_var_old_new[input_arg_name]:
256 257 258
                        op._rename_input(
                            input_arg_name,
                            dict_rename_var_old_new[input_arg_name])
259
                        if cur_block.has_var(input_arg_name.encode()):
260
                            cur_block._rename_var(
261 262 263
                                input_arg_name.encode(),
                                dict_rename_var_old_new[input_arg_name].encode(
                                ))
264 265 266 267 268 269 270
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
                    if output_arg_name != dict_rename_var_old_new[
                            output_arg_name]:
                        op._rename_output(
                            output_arg_name,
                            dict_rename_var_old_new[output_arg_name])
271
                        if cur_block.has_var(output_arg_name.encode()):
272
                            cur_block._rename_var(
273 274 275
                                output_arg_name.encode(),
                                dict_rename_var_old_new[output_arg_name].encode(
                                ))
276 277 278 279
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


280 281 282 283 284
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
285
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
286 287 288 289 290 291 292
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
293
    for i in range(program_desc.num_blocks()):
294
        block = program_desc.block(i)
295
        for j in range(block.op_size()):
296 297 298 299 300 301 302 303 304
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


class _ProgramHolder(object):
    """
    Holds the execution information of a Program.

305 306
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
307 308 309 310 311 312 313 314
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
        super(_ProgramHolder, self).__init__()

315
        # input, output, persistable, double_grads var info
316
        self._input_descs = []
317
        self._output_descs = []
318
        self._double_grad_descs = []
319
        self._persistable_names = []
320 321 322 323

        # execution scope
        self._inner_scope = core.Scope()

324 325
        # append suffix var name dict
        self._suffix_varname_dict = None
326 327 328 329 330 331
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
            self._infer_program_desc)

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
            self._output_descs)
        end_op_index = whole_program.desc.block(0).op_size()
        if (start_op_index < end_op_index):
            return add_build_strategy_for(whole_program, start_op_index,
                                          end_op_index)
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

363 364 365 366 367 368 369 370
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

371 372 373 374 375 376 377 378
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

379
    @property
380 381
    def input_descs(self):
        return self._input_descs
382 383

    @property
384
    def output_descs(self):
385 386 387 388 389 390
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

391 392 393 394
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

395 396 397 398 399
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
400 401
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
402 403
        rename_new_old_dict, _ = _rename_var_program_desc(
            program_desc, list_persistable_var)
404 405 406 407
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
408
        for i in range(root_block.op_size()):
409 410 411
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
412
                feed_var_name = op.input('X')[0].encode()
413
                root_block._remove_var(feed_var_name)
414
                self._input_descs.append(
415
                    root_block.find_var(op.output('Out')[0].encode()))
416 417 418
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
                    'save_infer_model/scale_'):
                ops_to_remove.append(i)
419
                out_var_name = op.output('Out')[0].encode()
420 421
                root_block._remove_var(out_var_name)
                self._output_descs.append(
422
                    root_block.find_var(op.input('X')[0].encode()))
423 424
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
425
                fetch_var_name = op.output('Out')[0].encode()
426 427 428 429
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
430
                        root_block.find_var(op.input('X')[0].encode()))
431 432 433 434 435 436 437
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

438 439 440 441 442 443
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

444
        # 2. Input processing, reverse feed vars
445
        self._input_descs.reverse()
446 447 448 449

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
450 451 452 453 454
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
455
        # use, multiple outputs may be associated with multiple branches.
456 457 458 459
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
460 461 462 463 464
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
465
        # - append loaded suffix to persistable vars
466
        # NOTE: [why need to append suffix to persistable vars]
467 468 469 470 471 472
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
473
        # to add the LOADED suffix to the parameters of the model loaded
474 475
        self._suffix_varname_dict = _get_loaded_var_new_old(
            program_desc, rename_new_old_dict)
476

477 478 479 480 481 482 483 484 485 486 487 488
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
489 490 491
                var = nn.scale(var,
                               1.,
                               name="translated_layer/scale_{}".format(i))
492 493 494 495 496 497
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
498
    def _get_train_forward_program(self, infer_program_desc):
499 500 501 502 503 504 505 506
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
507
        # rewrite a series of methods for append_backward for program_desc.
508 509
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
510 511
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
512
        for block_idx in range(program.num_blocks):
513 514 515 516 517 518 519 520 521 522 523 524 525
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
                    if "ReserveSpace" not in op.output_names or len(
                            op.output("ReserveSpace")) == 0:
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
                                ".".join(["reserve_space", 'tmp'])),
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=True)
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
526 527 528 529 530
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
531

532 533 534 535 536 537 538 539 540 541
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
542
#
543 544 545 546 547 548 549
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
550
#
551 552 553
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
554
# 1. Data Sharing:
555 556 557 558
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
559
#
560 561 562 563
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
564
#   We can not separate the program into forward and backward part, which will
565 566 567 568 569 570 571 572 573 574 575 576
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
def _load_persistable_vars_by_program(model_path,
                                      program_holder,
                                      params_filename=None):
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
577
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
578 579
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
580
            if framework._in_eager_without_dygraph_check():
581 582 583 584 585
                new_var = framework.EagerParamBase(shape=each_var.shape(),
                                                   dtype=each_var.dtype(),
                                                   name=each_var.name(),
                                                   type=each_var.type(),
                                                   persistable=True)
586
            else:
587 588 589 590 591
                new_var = framework.ParamBase(shape=each_var.shape(),
                                              dtype=each_var.dtype(),
                                              name=each_var.name(),
                                              type=each_var.type(),
                                              persistable=True)
592
        else:
593 594 595 596 597
            new_var = framework._varbase_creator(type=each_var.type(),
                                                 name=each_var.name(),
                                                 shape=each_var.shape(),
                                                 dtype=each_var.dtype(),
                                                 persistable=True)
598 599 600 601 602 603 604 605 606 607 608
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, orig_each_name)})
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
609 610 611 612 613 614
        dict_name_old_new = {
            v: k
            for k, v in program_holder._suffix_varname_dict.items()
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
615 616 617 618 619 620 621 622 623 624 625 626 627 628

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': os.path.join(model_path, params_filename)})

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
629
    # After loading the model, the stop_gradient information
630 631 632 633 634 635 636 637 638 639 640 641
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


642 643
def _load_persistable_vars(model_path, var_info_path, program_holder,
                           params_filename):
644 645
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
646
        extra_var_info = pickle.load(f)
647 648 649 650

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
651 652 653 654
    inv_suffix_varname_dict = {
        value: key
        for key, value in program_holder._suffix_varname_dict.items()
    }
655 656 657

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
658
    # var in `extra_var_info` may have been pruned
659 660 661 662 663 664
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
                name)
665 666
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
667 668 669
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
670
            if framework._in_eager_without_dygraph_check():
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
                    persistable=True)
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
                    persistable=True)
686
        else:
687 688
            new_var = framework._varbase_creator(name=new_name,
                                                 persistable=True)
689 690 691 692 693 694

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
695 696 697 698 699 700
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
701 702 703 704
        framework._dygraph_tracer().trace_op(type='load_combine',
                                             inputs={},
                                             outputs={'Out': load_var_list},
                                             attrs={'file_path': var_file_path})
705 706 707 708

    return load_var_dict


709 710 711 712 713 714 715 716 717
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


718 719 720 721 722 723 724 725
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
726 727 728 729 730 731 732 733
        model_name = model_filename[:-len(INFER_MODEL_SUFFIX)]
        #Load every file that meets the requirements in the directory model_path.
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
                    model_name):
734 735 736
                parsing_names = filename[len(model_name
                                             ):-len(INFER_MODEL_SUFFIX) +
                                         1].split('.')
737 738 739 740 741
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
742 743 744 745
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
                _load_program_desc(model_file_path))
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
                        _load_program_desc(model_file_path))

    return program_holder_dict


def _construct_params_and_buffers(model_path,
                                  programs,
764 765
                                  params_filename=None,
                                  append_suffix=True):
766 767
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
768
    params_path = os.path.join(model_path, str(params_filename))
769

770 771
    if os.path.exists(var_info_path):
        var_dict = _load_persistable_vars(model_path, var_info_path,
772
                                          programs['forward'], params_filename)
773 774 775
        model_name = params_filename[:-len(INFER_PARAMS_SUFFIX)]
        #Load every file that meets the requirements in the directory model_path.
        for file_name in os.listdir(model_path):
776 777
            if file_name.startswith(model_name) and file_name.endswith(
                    INFER_PARAMS_SUFFIX):
778 779 780
                parsing_names = file_name[len(model_name
                                              ):-len(INFER_PARAMS_SUFFIX) +
                                          1].split('.')
781 782 783 784
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
785 786 787 788
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
789 790
                _load_persistable_vars(model_path, var_info_path,
                                       programs[func_name], file_name))
791 792 793
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
794
    else:
795 796 797
        var_dict = _load_persistable_vars_by_program(model_path,
                                                     programs['forward'],
                                                     params_filename)
798 799 800 801

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

802 803 804
    return var_dict


0
0x45f 已提交
805 806 807
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
808
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
809 810 811 812 813 814 815 816 817 818 819
        return [
            core.eager.Tensor(core.VarDesc.VarType.FP32, [], "Fake_var",
                              core.VarDesc.VarType.RAW, False)
        ]
    else:
        return [
            core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                         core.VarDesc.VarType.RAW, False)
        ]


W
WeiXin 已提交
820 821 822 823 824
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
825
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
826 827 828 829 830
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
                % type(value))
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
831
            if framework._in_eager_without_dygraph_check():
832 833 834 835 836 837 838
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            else:
839 840 841 842 843
                var = core.VarBase(value=value,
                                   name=program_holder.input_descs[i].name(),
                                   persistable=False,
                                   place=framework._current_expected_place(),
                                   zero_copy=True)
W
WeiXin 已提交
844 845
        else:
            var = value
846
            # NOTE: we changed var name here,
W
WeiXin 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
                % var_name)

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
869
        if framework._in_eager_without_dygraph_check():
870 871 872 873 874
            var = core.eager.Tensor(dtype=var_desc.dtype(),
                                    dims=var_desc.shape(),
                                    name=var_desc.name(),
                                    type=var_desc.type(),
                                    persistable=False)
875
        else:
876
            var = core.VarBase(var_desc.dtype(), var_desc.shape(),
877
                               var_desc.name(), var_desc.type(), False)
W
WeiXin 已提交
878 879 880
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
881
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
882
        tmp_scope_vec = [program_holder.scope]
883 884 885 886
    else:
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)
0
0x45f 已提交
887
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
888

889 890
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
891
        if framework._in_eager_without_dygraph_check():
892 893 894 895 896
            var = core.eager.Tensor(dtype=var_desc.dtype(),
                                    dims=var_desc.shape(),
                                    name=var_desc.name(),
                                    type=var_desc.type(),
                                    persistable=False)
897
        else:
898
            var = core.VarBase(var_desc.dtype(), var_desc.shape(),
899
                               var_desc.name(), var_desc.type(), False)
900 901
        double_grad_vars.append(var)

W
WeiXin 已提交
902 903
    # 2. run program by op
    trace_program = program_holder.infer_program if instance._is_test else program_holder.train_program
904
    forward_program = program_holder._infer_program_desc if instance._is_test else program_holder.forward_program
W
WeiXin 已提交
905
    end_op_index = program_holder.infer_program.block(0).op_size()
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

    attrs = [
        'global_block',
        trace_program.block(0), 'start_op_index', 0, 'end_op_index',
        end_op_index, 'is_test', instance._is_test, 'program_id',
        _hash_with_id(trace_program, instance)
    ]

    use_interpretorcore = _is_enable_standalone_executor(
    ) and _is_dy2st_enable_standalone_executor()
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
            ('forward_global_block', forward_program.block(0),
             'backward_global_block', program_holder.backward_program.block(0)))

922 923 924 925
    _legacy_C_ops.run_program(_valid_vars(input_vars),
                              _valid_vars(persistable_vars),
                              _valid_vars(output_vars), tmp_scope_vec,
                              _valid_vars(double_grad_vars), None, *attrs)
926

W
WeiXin 已提交
927 928 929 930 931 932 933 934
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
935
        grad_var_name = persistable_var.name + core.grad_var_suffix()
936
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
937
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
938 939 940 941 942
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

943 944
    drop_scope_if_no_grad(instance, tmp_scope_vec)

W
WeiXin 已提交
945 946 947 948 949 950 951
    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


952 953
def drop_scope_if_no_grad(instance, scope_vec):
    tracer = framework._dygraph_tracer()
954 955
    scope = scope_vec.value().get_scope() if isinstance(
        scope_vec, (core.VarBase)) else scope_vec[0]
956
    if (not instance._is_test) and (not tracer._has_grad):
0
0x45f 已提交
957
        scope.drop_kids()
958 959


W
WeiXin 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
        trace_program, exclude=param_var_names)
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
    _append_block(main_program, trace_program, program_holder, input,
                  dict_rename_var_old_new)
    main_program._sync_with_cpp()
    outs = _get_output_from_program(main_program, program_holder,
                                    dict_rename_var_old_new)
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
981

W
WeiXin 已提交
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


def _append_block(dest_program,
                  src_program_desc,
                  program_holder,
                  input_variables,
                  dict_rename_var_old_new=None):
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1007

W
WeiXin 已提交
1008 1009 1010 1011 1012
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1013
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1014 1015 1016 1017 1018 1019
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
    param_var_names = _collect_current_and_parent_var(dest_program,
                                                      origin_block_idx)
1020 1021 1022
    append_var_from_block_desc_static(dest_program.block(origin_block_idx),
                                      src_program_desc.block(0),
                                      exclude=param_var_names)
W
WeiXin 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
            "The number of input is invalid, expected {}, but received {}.".
            format(len(name_inp_desc), len(input_names)))
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
            outputs={'Out': [out_name]})

    append_ops = append_op_from_block_desc_static(
        dest_program.block(origin_block_idx), src_program_desc.block(0))
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1053 1054 1055 1056 1057
            append_var_from_block_desc_static(dest_block,
                                              src_block,
                                              exclude=param_var_names)
            append_ops += append_op_from_block_desc_static(
                dest_block, src_block)
W
WeiXin 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
            op._set_attr('sub_block',
                         dest_program.block(offset_block_idx + origin_id))
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


def _get_output_from_program(program,
                             program_holder,
                             dict_rename_var_old_new=None):
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1124 1125 1126 1127 1128 1129
    op = framework.Operator(block=block,
                            desc=op_append,
                            type=op_type,
                            inputs=None,
                            outputs=None,
                            attrs=None)
W
WeiXin 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    block.ops.append(op)
    return op


def append_var_from_block_desc_static(block,
                                      src_block_desc,
                                      include=None,
                                      exclude=None):
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
            exclude is None or var_desc_name not in exclude)
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
                    core.VarDesc.VarType.SELECTED_ROWS,
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1177 1178 1179 1180 1181
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1182
            vars_append.append(
1183
                current_block.create_var(
W
WeiXin 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
                    set_need_check_feed=var_desc.need_check_feed()))
    return vars_append


1194 1195
class TranslatedLayer(layers.Layer):
    """
1196 1197
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1198
    general Layer object in eval or train mode.
1199

1200
    .. note:
1201
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1202 1203 1204 1205 1206

    Examples:
        .. code-block:: python

            import numpy as np
1207 1208 1209
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1210

1211 1212 1213
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1214

1215 1216 1217 1218 1219 1220 1221
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1222

1223 1224 1225 1226
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1227

1228 1229
                def __len__(self):
                    return self.num_samples
1230

1231 1232
            class LinearNet(nn.Layer):
                def __init__(self):
1233
                    super(LinearNet, self).__init__()
1234
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1235

1236
                @paddle.jit.to_static
1237 1238 1239
                def forward(self, x):
                    return self._linear(x)

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1251 1252
            # 1. train & save model.

1253 1254 1255 1256
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1257

1258 1259 1260 1261 1262 1263 1264
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1265

1266 1267
            # train
            train(layer, loader, loss_fn, adam)
1268

1269
            # save
1270
            model_path = "linear.example.model"
1271
            paddle.jit.save(layer, model_path)
1272 1273

            # 2. load model as TranslatedLayer
1274 1275 1276 1277

            # load
            translated_layer = paddle.jit.load(model_path)

1278 1279
            # inference
            translated_layer.eval()
1280
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1281
            pred = translated_layer(x)
1282

1283 1284
            # fine-tune
            translated_layer.train()
1285 1286
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

    """

    def __init__(self, programs, persistable_vars):
        super(TranslatedLayer, self).__init__()

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1299
                "TranslatedLayer need to use persistable variable dict for initialization."
1300 1301 1302 1303
            )

        self._program_holder_dict = programs

1304 1305 1306 1307 1308 1309 1310 1311
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1312 1313 1314
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1315 1316
                if isinstance(var,
                              (framework.ParamBase, framework.EagerParamBase)):
1317 1318 1319
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1320
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1321 1322 1323 1324 1325 1326 1327
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1328 1329

        self._is_test = True
W
WeiXin 已提交
1330
        self._input_args_names = None
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1348
        # 2. load layer parameters & buffers
1349 1350
        persistable_vars = _construct_params_and_buffers(
            model_path, programs, params_filename)
1351 1352 1353 1354 1355 1356

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1357 1358 1359 1360
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1361 1362 1363 1364
            setattr(
                TranslatedLayer, method_name,
                TranslatedLayer._execution_method_creator(
                    method_name, program_holder))
1365 1366 1367 1368 1369 1370 1371 1372

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
1373

W
WeiXin 已提交
1374 1375 1376 1377
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1378
            if _non_static_mode():
W
WeiXin 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
                    core.ProgramDesc(program_holder.infer_program))
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1391 1392 1393

    def train(self):
        self._is_test = False
1394
        self.training = True
1395 1396 1397

    def eval(self):
        self._is_test = True
1398
        self.training = False
1399 1400 1401 1402 1403 1404 1405 1406

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1407

1408 1409 1410 1411 1412
        Returns:
            Program

        Examples:
            .. code-block:: python
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1486
        program_holder = self._get_program_holder(method_name)
1487 1488 1489 1490 1491 1492 1493

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
                "The method `%s` does not exist in loaded TranslatedLayer." %
                method_name)
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1510 1511 1512
            spec = paddle.static.InputSpec(shape=var_desc.shape(),
                                           dtype=var_desc.dtype(),
                                           name=var_desc.name())
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1524 1525
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1526
            # construct the description of Output tensor
1527 1528 1529
            spec = paddle.static.InputSpec(shape=var_desc.shape(),
                                           dtype=var_desc.dtype(),
                                           name=var_desc.name())
1530 1531 1532
            output_spec.append(spec)

        return output_spec