prepared_operator.h 27.2 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/framework/phi_utils.h"
26
#include "paddle/fluid/framework/type_defs.h"
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28 29
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/imperative/var_helper.h"
J
Jiabin Yang 已提交
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/phi/core/dense_tensor.h"
34
#include "paddle/phi/core/kernel_context.h"
35
#include "paddle/phi/core/selected_rows.h"
36

37 38
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
39 40 41 42 43
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

44 45 46 47 48 49 50 51
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
52
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
53 54 55 56 57 58 59 60 61 62 63 64 65
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
66
template <>
67 68
void SetForwardDataTypeOfGradVar<egr::EagerVariable>(
    const std::shared_ptr<egr::EagerVariable>& var) {
J
Jiabin Yang 已提交
69 70 71 72 73
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
74

75
template <typename VarType>
76
std::shared_ptr<NameVarMap<VarType>> PrepareData(
77 78
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
79 80 81
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
82 83 84
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
85 86 87 88 89 90
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
91 92 93
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
94

J
Jiabin Yang 已提交
95
          if (CheckCachedKey(template_var, expected_kernel_key)) {
96 97 98
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
99
                GetCachedValue(template_var, expected_kernel_key);
100 101 102
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
103 104

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
105 106 107
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
108 109
            SetTensorToVariable(cache_var->Var(), *tensor,
                                tmp_var->MutableVar());
110 111
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
112 113 114 115 116 117 118 119 120 121 122
            framework::Tensor out;
            TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                          &out);
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
123 124 125 126 127
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
              SetTensorToVariable(template_var->Var(), out,
                                  tmp_var->MutableVar());
128
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
129
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
130 131 132 133 134 135
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
J
Jiabin Yang 已提交
136 137
              SetTensorToVariable(template_var->Var(), out,
                                  template_var->MutableVar());
138
            }
139
          }
140 141 142 143
        }
      }
    }
  }
144
  return tmp_ins_ptr;
145 146
}

J
Jiabin Yang 已提交
147 148
class PreparedOp {
 public:
149 150
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
151
             const framework::OpKernelType& kernel_type,
152
             const framework::OperatorWithKernel::OpKernelFunc& func,
153 154
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
155
             platform::DeviceContext* dev_ctx);
156

157 158 159
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
160 161 162 163
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
             phi::KernelSignature&& kernel_signature,
             const phi::Kernel& phi_kernel, platform::DeviceContext* dev_ctx);
164

165 166 167 168
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
169
                            const framework::AttributeMap& attrs,
170
                            const framework::AttributeMap& default_attrs);
171 172 173 174 175

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
176
                            const framework::AttributeMap& attrs,
177
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
178

179 180
  static PreparedOp Prepare(const NameVarMap<egr::EagerVariable>& ins,
                            const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
181 182 183 184 185
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

186
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
187 188
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
189 190 191

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
192 193
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
194

195 196
  void Run(const NameVarMap<egr::EagerVariable>& ins,
           const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
197 198 199
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

200 201
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
202 203 204
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
205
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
206 207
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
208
  // NOTE(chenweihang): Similar op members are used to adapt to
209
  // new phi kernel, if there is a better design in the future,
210
  // we may polish the implementation here
211
  bool run_phi_kernel_{false};
L
Liu-xiandong 已提交
212
  bool run_kp_kernel_{false};
213 214 215 216
  const phi::ArgumentMappingFn* arg_map_fn_;
  const phi::KernelSignature* default_kernel_signature_;
  phi::KernelSignature kernel_signature_;
  const phi::Kernel& phi_kernel_;
J
Jiabin Yang 已提交
217 218
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
const inline framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

template <typename VarType>
235 236 237 238 239 240 241 242
void BuildDygraphPhiKernelContext(const phi::KernelSignature& kernel_signature,
                                  const phi::Kernel& phi_kernel,
                                  const NameVarMap<VarType>& ins,
                                  const NameVarMap<VarType>& outs,
                                  const framework::AttributeMap& attrs,
                                  const framework::AttributeMap& default_attrs,
                                  platform::DeviceContext* dev_ctx,
                                  phi::KernelContext* kernel_ctx) {
243 244
  kernel_ctx->SetDeviceContext(dev_ctx);

245 246 247
  const auto& input_names = kernel_signature.input_names;
  const auto& attr_names = kernel_signature.attr_names;
  const auto& output_names = kernel_signature.output_names;
248

249 250 251
  auto& input_defs = phi_kernel.args_def().input_defs();
  auto& output_defs = phi_kernel.args_def().output_defs();
  auto& attr_defs = phi_kernel.args_def().attribute_defs();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
272
    auto it = ins.find(input_names[i]);
273 274 275

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

F
From00 已提交
276 277 278 279 280 281 282 283
    if (it == ins.end()) {
      if (LIKELY(input_defs[i].type_index ==
                 std::type_index(
                     typeid(paddle::optional<const phi::DenseTensor&>)))) {
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
284 285 286 287 288 289 290 291
      } else if (input_defs[i].type_index ==
                 std::type_index(
                     typeid(paddle::optional<
                            const std::vector<const phi::DenseTensor*>>))) {
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
F
From00 已提交
292 293 294 295 296
      } else {
        PADDLE_THROW(phi::errors::NotFound(
            "Can not find input variable '%s' for %s OP, please check whether "
            "the name setting in OpArgumentMapping is consistent with that in "
            "OpMaker.",
297
            input_names[i], kernel_signature.name));
F
From00 已提交
298
      }
299
    }
F
From00 已提交
300

301
    auto& ins_vector = it->second;
302 303 304
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
305
      const phi::TensorBase* tensor_in = nullptr;
306
      auto& var = ins_vector[offset]->Var();
307 308
      if (var.template IsType<phi::DenseTensor>()) {
        tensor_in = &(var.template Get<phi::DenseTensor>());
309
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
310 311
      } else if (var.template IsType<phi::SelectedRows>()) {
        tensor_in = &(var.template Get<phi::SelectedRows>());
312 313 314 315 316 317 318 319 320
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var.template IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var.template Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        kernel_ctx->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
321 322 323 324
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var.Type())));
325
      }
326
    }
327
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
349

350
      phi::TensorBase* tensor_out = nullptr;
351
      auto* var = outs_vector[offset]->MutableVar();
352 353 354
      if (var) {
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
355
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
356 357
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
358 359 360 361 362 363 364 365 366 367
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          kernel_ctx->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
368 369 370 371 372
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
373 374
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
375
      }
376 377 378 379 380
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
381
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
382 383 384 385 386 387
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
388
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
389 390 391
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
392
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
C
chentianyu03 已提交
393 394 395
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int64_t))) {
          kernel_ctx->EmplaceBackAttr(
396
              std::move(phi::IntArray(&BOOST_GET_CONST(int64_t, attr), 1)));
C
chentianyu03 已提交
397 398 399
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int32_t))) {
          kernel_ctx->EmplaceBackAttr(
400
              std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
H
hong 已提交
401 402 403 404
        } else if (attr_defs[i].type_index ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          kernel_ctx->EmplaceBackAttr(vector_int_attr);
405 406 407 408 409 410 411 412 413 414
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
415
              experimental::MakePhiIntArrayFromVar(ins_vector[0]->Var())));
416 417 418 419 420 421
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
422 423
          kernel_ctx->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(variables)));
424 425 426
        }
      }
    } else if (attr_defs[i].type_index ==
427
               std::type_index(typeid(phi::Scalar))) {
428 429 430 431 432 433 434 435 436
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
437
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
438 439 440
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
441
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
442 443 444
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          kernel_ctx->EmplaceBackAttr(
445
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
446 447 448 449 450 451 452 453 454
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
455
            experimental::MakePhiScalarFromVar(ins_vector[0]->Var())));
456 457
      }

H
hong 已提交
458 459 460 461 462 463 464 465 466 467 468
    } else if (ins.find(attr_names[i]) != ins.end()) {
      // deal tensor attr here
      auto& ins_vector = ins.at(attr_names[i]);
      auto tensor_attr =
          experimental::MakePhiScalarFromVar(ins_vector[0]->Var());
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        int val = tensor_attr.template to<int>();
        kernel_ctx->EmplaceBackAttr(val);
      } else {
        PADDLE_THROW(platform::errors::Unimplemented("only support int here"));
      }
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<bool>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<bool>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
523 524
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
525

526 527 528 529 530 531 532
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
H
hong 已提交
533 534
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
H
hong 已提交
535 536 537
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
538
      } else if (attr_defs[i].type_index ==
539
                 std::type_index(typeid(phi::DataType))) {
540
        auto data_type = framework::TransToPhiDataType(
541 542 543 544 545 546
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
547 548 549 550 551
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int>))) {
552
          // Emplace Back Attr according to the type of Phi_Kernel args.
553 554 555 556 557
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
558 559 560
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int>))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::vector<int>, attr));
561 562 563 564
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<std::string>))) {
        kernel_ctx->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
565 566 567
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<float>))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::vector<float>, attr));
568 569 570 571 572 573 574 575 576 577 578
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

template <typename VarType>
579 580
void PreparePhiData(const phi::Kernel& phi_kernel,
                    const phi::KernelSignature& kernel_signature,
581
                    const NameVarMap<VarType>& ins) {
582 583
  const auto& input_names = kernel_signature.input_names;
  auto& input_defs = phi_kernel.args_def().input_defs();
584 585 586 587 588 589 590 591 592

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
593 594
    auto iter = ins.find(input_names[i]);
    if (iter == ins.end()) {
H
hong 已提交
595 596
      continue;
    }
597
    auto& ins_vector = iter->second;
598 599

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
600
      auto& var = ins_vector[offset];
J
Jiabin Yang 已提交
601
      const auto* tensor_in = GetTensorFromVar(var->Var());
602
      if (tensor_in && tensor_in->IsInitialized()) {
603 604 605
        if (in_def.backend == phi::Backend::ALL_BACKEND) {
          continue;
        }
606 607 608 609
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if (in_def.backend == tensor_backend ||
            (in_def.backend == phi::Backend::GPUDNN &&
             tensor_backend == phi::Backend::GPU)) {
610 611 612
          continue;
        }

613 614
        auto expected_place = phi::TransToPhiPlace(in_def.backend);

615
        VLOG(3) << "Phi Transform Variable " << input_names[i] << " from "
616 617 618 619 620
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
621
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
622 623 624 625 626
      }
    }
  }
}

J
Jiabin Yang 已提交
627 628
}  // namespace imperative
}  // namespace paddle