prepared_operator.h 18.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

21 22
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/framework/operator.h"
24 25
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/fluid/framework/type_defs.h"
26
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
27 28 29
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"

30 31
DECLARE_bool(use_mkldnn);

32 33 34 35
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
36 37 38 39 40 41
namespace paddle {
namespace framework {
class Variable;
}  // namespace framework
}  // namespace paddle

J
Jiabin Yang 已提交
42 43 44 45 46
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

47 48 49 50 51 52 53 54
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
55
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
56 57 58 59 60 61 62 63 64 65 66 67 68
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

69 70 71 72 73
extern const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<paddle::imperative::VarBase>& var);
extern const std::shared_ptr<VariableWrapper>& GetVariableWrapper(
    const std::shared_ptr<VariableWrapper>& var);

74
template <typename VarType>
75
std::shared_ptr<NameVarMap<VarType>> PrepareData(
76 77
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
78 79 80 81
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
      auto& var_base = name_pair.second[i];
82
      SetForwardDataTypeOfGradVar(var_base);
83
      const auto* tensor = GetTensorFromVar(var_base->Var());
84 85 86 87 88 89 90 91
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
          VLOG(3) << "Transform Variable " << var_base->Name() << " from "
                  << kernel_type_for_var << " to " << expected_kernel_key;
92 93 94 95 96 97 98

          if (GetVariableWrapper(var_base)->hasCacheKey(expected_kernel_key)) {
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
                GetVariableWrapper(var_base)->getCacheValue(
                    expected_kernel_key);
99 100 101
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
102 103

            const auto* tensor = GetTensorFromVar(cache_var->Var());
104 105
            auto tmp_var = std::make_shared<VarType>(var_base->Name());
            tmp_var->SetType(var_base->Type());
106 107
            SetTensorToVariable(cache_var->Var(), *tensor,
                                tmp_var->MutableVar());
108 109
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            framework::Tensor out;
            TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                          &out);
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
              auto tmp_var = std::make_shared<VarType>(var_base->Name());
              tmp_var->SetType(var_base->Type());
              SetTensorToVariable(var_base->Var(), out, tmp_var->MutableVar());
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;

              GetVariableWrapper(var_base)->setCacheValue(
                  expected_kernel_key, GetVariableWrapper(tmp_var));
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
              SetTensorToVariable(var_base->Var(), out, var_base->MutableVar());
            }
136
          }
137 138 139 140
        }
      }
    }
  }
141
  return tmp_ins_ptr;
142 143
}

J
Jiabin Yang 已提交
144 145
class PreparedOp {
 public:
146 147
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
148
             const framework::OpKernelType& kernel_type,
149
             const framework::OperatorWithKernel::OpKernelFunc& func,
150
             platform::DeviceContext* dev_ctx);
151

152 153 154 155
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
             const framework::KernelSignature& kernel_signature,
156
             const pten::Kernel& pt_kernel, platform::DeviceContext* dev_ctx);
157

158 159 160 161
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
162
                            const framework::AttributeMap& attrs,
163
                            const framework::AttributeMap& default_attrs);
164 165 166 167 168

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
169
                            const framework::AttributeMap& attrs,
170
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
171

172
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
173 174
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
175 176 177

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
178 179
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
180

181 182
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
183 184 185
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
186
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
187 188
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
189 190 191 192 193 194
  // NOTE(chenweihang): Similar op members are used to adapt to
  // new pten kernel, if there is a better design in the future,
  // we may polish the implementation here
  bool run_pten_kernel_{false};
  framework::KernelSignature pt_kernel_signature_;
  pten::Kernel pt_kernel_;
J
Jiabin Yang 已提交
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
const inline framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

template <typename VarType>
void BuildDygraphPtenKernelContext(
    const framework::KernelSignature& pt_kernel_signature,
    const pten::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
    platform::DeviceContext* dev_ctx, pten::KernelContext* kernel_ctx) {
  kernel_ctx->SetDeviceContext(dev_ctx);

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& ins_vector = ins.at(input_names[i]);

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      const auto* tensor_in = GetTensorFromVar(ins_vector[offset]->Var());
      kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
    }
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
      auto* var = outs_vector[offset]->MutableVar();
      framework::Tensor* tensor_out = nullptr;
      if (var->template IsType<framework::LoDTensor>()) {
        tensor_out = var->template GetMutable<framework::LoDTensor>();
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported output `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
      }  // TODO(zyfncg): Add support for SelectedRows

      experimental::ResetTensorByArgDef(tensor_out, output_defs.at(i));
      framework::SetAllocationForOutputTenosr(
          tensor_out, pten::TransToFluidPlace(output_defs.at(i).backend));

      kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
    if (attr_defs[i].type_index == std::type_index(typeid(pten::ScalarArray))) {
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
              pten::ScalarArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVar(ins_vector[0]->Var())));
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
          kernel_ctx->EmplaceBackAttr(std::move(
              experimental::MakePtenScalarArrayFromVarList(variables)));
        }
      }
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(pten::Scalar))) {
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(float, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(std::string, attr))));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          kernel_ctx->EmplaceBackAttr(
              std::move(pten::Scalar(BOOST_GET_CONST(int, attr))));
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
            experimental::MakePtenScalarFromVar(ins_vector[0]->Var())));
      }

    } else {
      // TODO(chenweihang): support other attrs later
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(pten::DataType))) {
        auto data_type = pten::TransToPtenDataType(
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int>))) {
          // Emplace Back Attr according to the type of Pten_Kernel args.
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
        // TODO(YuanRisheng) Need support vector<int64_t> attr
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

template <typename VarType>
void PreparePtenData(const pten::Kernel& pt_kernel,
                     const framework::KernelSignature& pt_kernel_signature,
                     const NameVarMap<VarType>& ins) {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& input_defs = pt_kernel.args_def().input_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
    auto& ins_vector = ins.at(input_names[i]);

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      auto var_base = ins_vector[offset];
      const auto* tensor_in = GetTensorFromVar(var_base->Var());
      if (tensor_in && tensor_in->IsInitialized()) {
        auto expected_place = pten::TransToFluidPlace(in_def.backend);
        if (platform::is_same_place(tensor_in->place(), expected_place)) {
          continue;
        }

        VLOG(3) << "Pten Transform Variable " << input_names[i] << " from "
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

        SetTensorToVariable(var_base->Var(), tmp_tensor,
                            var_base->MutableVar());
      }
    }
  }
}

J
Jiabin Yang 已提交
439 440
}  // namespace imperative
}  // namespace paddle