prepared_operator.h 6.0 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

21 22
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/framework/operator.h"
24
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
25 26 27
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"

28 29
DECLARE_bool(use_mkldnn);

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class Tensor;
class Variable;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

J
Jiabin Yang 已提交
40 41 42 43 44
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
    VLOG(6) << "Set grad var (" << grad_var->Name() << ") dtype to ("
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

#ifdef PADDLE_WITH_XPU
static void ReplaceXPUKernelIfNotExists(
    const framework::OperatorWithKernel& op,
    framework::OpKernelType* expected_kernel_key) {
  auto& all_op_kernels = op.AllOpKernels();
  auto kernels_iter = all_op_kernels.find(op.Type());
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::NotFound(
          "There are no kernels which are registered in the %s operator.",
          op.Type()));

  auto& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(*expected_kernel_key);
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key->place_)) {
    expected_kernel_key->place_ = platform::CPUPlace();
  }
}
#endif

template <typename VarType>
framework::OpKernelType GetExpectedKernelKey(
    const NameVarMap<VarType>& ins, const NameVarMap<VarType>& outs,
    const framework::OperatorWithKernel& op, const platform::Place& place,
    const framework::AttributeMap& attrs) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);
  framework::RuntimeContext ctx({}, {});

#ifdef PADDLE_WITH_MKLDNN
  // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and
  // GetKernelType functions, so we need to copy the attributes there.
  // Const qualifier of Attrs had to be discarded to overwrite it.
  if (FLAGS_use_mkldnn) {
    auto& mutable_op_attrs = const_cast<framework::AttributeMap&>(op.Attrs());
    mutable_op_attrs = attrs;
  }
#endif

  auto expected_kernel_key =
      op.GetExpectedKernelType(DygraphExecutionContext<VarType>(
          op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs));
#ifdef PADDLE_WITH_XPU
  ReplaceXPUKernelIfNotExists(op, &expected_kernel_key);
#endif
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  return expected_kernel_key;
}

template <typename VarType>
NameVarMap<VarType> PrepareData(
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
  NameVarMap<VarType> tmp_ins(ins);
  for (auto& name_pair : tmp_ins) {
    for (auto& var_base : name_pair.second) {
      const auto* tensor = GetTensorFromVar(var_base->Var());
      SetForwardDataTypeOfGradVar(var_base);
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
          VLOG(3) << "Transform Variable " << var_base->Name() << " from "
                  << kernel_type_for_var << " to " << expected_kernel_key;
          framework::Tensor out;
          auto tmp_var = std::make_shared<VarType>(var_base->Name());
          tmp_var->SetType(var_base->Type());
          TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                        &out);
          SetTensorToVariable(var_base->Var(), out, tmp_var->MutableVar());
          var_base = tmp_var;
        }
      }
    }
  }
  return tmp_ins;
}

J
Jiabin Yang 已提交
149 150
class PreparedOp {
 public:
151 152
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
153
             const framework::OpKernelType& kernel_type,
154
             const framework::OperatorWithKernel::OpKernelFunc& func,
155
             platform::DeviceContext* dev_ctx);
156

157 158
  static PreparedOp Prepare(const framework::OperatorWithKernel& op,
                            const framework::OpKernelType& expected_kernel_key);
J
Jiabin Yang 已提交
159

160 161 162 163 164 165
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
           const framework::AttributeMap& attrs);

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
           const framework::AttributeMap& attrs);
J
Jiabin Yang 已提交
166 167 168 169

 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
170
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
171 172 173 174 175 176
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
};

}  // namespace imperative
}  // namespace paddle