utils.py 34.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
JZ-LIANG 已提交
14
import paddle
15
from paddle.fluid import core, unique_name
16
from functools import reduce
17
from paddle.distributed.fleet.meta_optimizers.common import is_loss_grad_op, is_backward_op, is_optimizer_op
18 19 20
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY

import re
J
JZ-LIANG 已提交
21
import os
22 23 24 25 26 27 28 29 30


def check_broadcast(block):
    """
    if a var is broadcasted, it should have a sync_comm before
    this var is used, if not, raise error.
    if the broadcasted var has a fill_constant op, the fill_constant
    op should stay forward before the broadcast op, and before a
    sync_calc op. Otherwise, raise error.
31 32

    should ignore and skip broadcast_op of inner_parallelism (e.g. Megatron)
33 34 35 36
    """
    broadcast_vars = {}
    for idx, op in enumerate(block.ops):
        if op.type == "c_broadcast":
37 38 39 40 41 42 43 44 45 46 47 48
            if op.all_attrs()["use_calc_stream"] == False:
                var_name = op.desc.input_arg_names()[0]
                if "@BroadCast" in var_name:
                    if var_name in broadcast_vars:
                        raise ValueError("var_name areadly exist: {}"
                                         "the old pos is {}, the new pos is {}".
                                         format(var_name, broadcast_vars[
                                             var_name]["broadcast_pos"], idx))
                    broadcast_vars[var_name] = {
                        "fill_constant_pos": -1,
                        "broadcast_pos": idx,
                    }
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    for idx, op in enumerate(block.ops):
        if op.type == "fill_constant":
            var_name = op.desc.output_arg_names()[0]
            if var_name in broadcast_vars:
                broadcast_vars[var_name]["fill_constant_pos"] = idx
            continue

    last_sync_comm_op_idx = -1
    last_sync_calc_op_idx = -1
    for idx, op in enumerate(block.ops):
        if op.type == "c_sync_comm_stream":
            last_sync_comm_op_idx = idx
            continue
        if op.type == "c_sync_calc_stream":
            last_sync_calc_op_idx = idx
            continue
        if op.type == "c_broadcast":
67 68 69 70 71 72 73 74 75
            if op.all_attrs()["use_calc_stream"] == False:
                var_name = op.desc.input_arg_names()[0]
                if "@BroadCast" in var_name:
                    if broadcast_vars[var_name]["fill_constant_pos"] != -1:
                        assert (last_sync_calc_op_idx != -1)
                        assert (broadcast_vars[var_name]["fill_constant_pos"] <
                                last_sync_calc_op_idx)
                        assert (last_sync_calc_op_idx < idx)
                    continue
76 77 78 79 80 81 82 83 84
        for input_name in op.desc.input_arg_names():
            if input_name in broadcast_vars:
                assert (broadcast_vars[input_name]["broadcast_pos"] != -1)
                assert (broadcast_vars[input_name]["broadcast_pos"] <
                        last_sync_comm_op_idx)
                assert (last_sync_comm_op_idx < idx)
    return


85
def check_allreduce_sum(block, shard, sharding_ring_id, dp_ring_id=-1):
86
    """
87 88 89 90
    the op order should be:
        grad:
            - 0: op that generate Var
            - 1: sync_calc
91
            - 2: reduce_sum_sharding (allreduce --> reduce)
92 93 94 95
            - 3: sync_comm
            - 4: allreuce_sum_dp (dp_grads)
            - 5: sync_comm (dp_grads)
            - 6: op that use Var (dp_grads & sum)
96 97

    should ignore and skip allreduce_op of inner_parallelism (e.g. Megatron)
98
    """
99 100 101 102 103
    vars_status = {}
    dp_grads_status = {}
    idx_last_grad_allreduce = -1
    idx_amp_allreduce = -1
    idx_gradient_clip_allreduce = -1
104

105
    for idx, op in enumerate(block.ops):
106 107 108 109 110 111
        # sharding use both allreduce and reduce to sync grad
        if op.type == "c_allreduce_sum" or op.type == "c_reduce_sum":
            if op.all_attrs()["use_calc_stream"] == False:
                ring_id = op.desc.attr("ring_id")
                var_name = op.desc.input_arg_names()[0]
                param = var_name.split("@")[0]
112

113 114 115 116 117
                assert 'sum' in var_name or ("@GRAD" in var_name)
                if 'sum' in var_name or (not shard.has_param(param)):
                    vars_status[var_name] = -1
                else:
                    dp_grads_status[var_name] = -1
118

119 120 121
                if ring_id != sharding_ring_id:
                    assert shard.has_param(param)
                    assert ring_id == dp_ring_id
122

123 124 125 126
                if "sum" in var_name:
                    idx_amp_allreduce = idx
                elif "@GRAD":
                    idx_last_grad_allreduce = idx
127 128 129

        if op.type == "c_allreduce_max":
            idx_gradient_clip_allreduce = idx
130 131 132

    for op in block.ops:
        if op.type == "c_sync_calc_stream":
133 134 135 136 137 138 139
            for var_name in vars_status:
                if var_name in vars_status and vars_status[var_name] == 0:
                    vars_status[var_name] = 1
            for var_name in dp_grads_status:
                if var_name in dp_grads_status and dp_grads_status[
                        var_name] == 0:
                    dp_grads_status[var_name] = 1
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        # check sharding allreduce and  reduce but skip megatron allreduce
        elif op.type == "c_allreduce_sum" or op.type == "c_reduce_sum":
            if op.all_attrs()["use_calc_stream"] == False:
                var_name = op.desc.input_arg_names()[0]
                ring_id = op.desc.attr("ring_id")
                if ring_id == sharding_ring_id:
                    assert op.type == "c_reduce_sum", "Grad in Sharding group should be reduce rather than allreduce"
                    if var_name in vars_status:
                        _status = vars_status[var_name]
                    else:
                        _status = dp_grads_status[var_name]
                    if _status == -1:
                        raise ValueError("{} is not generated, but you are"
                                         "trying to all-reduce it".format(
                                             var_name))
                    if _status == 0:
                        raise ValueError("There should be a sync_calc op "
                                         "after generate Var: {} and before the"
                                         "c_allreduce_sum op".format(var_name))
                    assert (_status == 1)
                    if var_name in vars_status:
                        vars_status[var_name] = 2
                    else:
                        dp_grads_status[var_name] = 2
164
                else:
165 166 167 168 169
                    assert ring_id == dp_ring_id
                    param = var_name.split("@")[0]
                    assert shard.has_param(param)
                    assert dp_grads_status[var_name] == 3
                    dp_grads_status[var_name] = 4
170

171
        elif op.type == "c_sync_comm_stream":
172 173
            var_name = op.desc.input_arg_names()[0]
            ring_id = op.desc.attr("ring_id")
174
            if ring_id == sharding_ring_id:
175 176 177 178 179 180 181 182 183 184 185 186 187 188
                for var_name in op.desc.input_arg_names():
                    if var_name in vars_status:
                        assert vars_status[var_name] == 2
                        vars_status[var_name] = 3
                    elif var_name in dp_grads_status:
                        assert dp_grads_status[var_name] == 2
                        dp_grads_status[var_name] = 3
            else:
                for var_name in op.desc.input_arg_names():
                    param = var_name.split("@")[0]
                    assert ring_id == dp_ring_id
                    assert shard.has_param(param)
                    assert dp_grads_status[var_name] == 4
                    dp_grads_status[var_name] = 5
189 190
        else:
            for input_name in op.desc.input_arg_names():
191 192
                if input_name in vars_status:
                    if vars_status[input_name] != 3:
193 194
                        raise ValueError("There should be a sync_comm op "
                                         "after allreduce the Var: {}".format(
195
                                             input_name))
196 197 198
                    raise ValueError(
                        "The reduce output grad [{}] should NOT be be used in Non-root rank.".
                        format(input_name))
199 200 201 202 203 204 205 206 207 208 209 210
                if input_name in dp_grads_status:
                    if dp_ring_id == -1:
                        if dp_grads_status[input_name] != 3:
                            raise ValueError("There should be a sync_comm op "
                                             "after allreduce the Var: {}".
                                             format(input_name))
                    else:
                        if dp_grads_status[input_name] != 5:
                            raise ValueError(
                                "The grad in shard should be allreduce and sync"
                                "twice before usage {}".format(input_name))

211
            for output_name in op.desc.output_arg_names():
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                if output_name in vars_status and \
                    vars_status[output_name] == -1:
                    vars_status[output_name] = 0
                if output_name in dp_grads_status and  \
                    dp_grads_status[output_name] == -1:
                    dp_grads_status[output_name] = 0

    # check sharding with amp
    if idx_amp_allreduce != -1:
        assert idx_amp_allreduce > idx_last_grad_allreduce

    # check sharding with gradient_clip_by_global_norm
    if idx_gradient_clip_allreduce != -1:
        assert idx_gradient_clip_allreduce > idx_last_grad_allreduce

227 228 229
    return


J
JZ-LIANG 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243
def get_valid_op_role(block, insert_idx):
    """
    return OpRole.Forward or OpRole.Backward
    """
    op_role = block.ops[insert_idx].attr('op_role')
    if (insert_idx >= len(block.ops)) or (
            op_role in [int(OpRole.Backward), int(OpRole.Optimize)]):
        return OpRole.Backward
    if op_role in [int(OpRole.Forward), int(OpRole.Loss)]:
        return OpRole.Forward

    return get_valid_op_role(block, insert_idx + 1)


244 245 246 247
def insert_sync_calc_op(block, insert_idx, calc_dep_vars):
    """
    _insert_sync_calc_op
    """
J
JZ-LIANG 已提交
248
    op_role = get_valid_op_role(block, insert_idx)
249 250 251 252 253 254 255 256 257
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_calc_stream',
        inputs={'X': calc_dep_vars},
        outputs={'Out': calc_dep_vars},
        attrs={OP_ROLE_KEY: op_role})
    return


258
def insert_sync_comm_op(block, insert_idx, ring_id, comm_dep_vars):
259
    """
260
    insert sync_comm_op for single var
261
    """
J
JZ-LIANG 已提交
262
    op_role = get_valid_op_role(block, insert_idx)
263 264 265 266 267 268 269 270 271 272 273 274 275 276
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_comm_stream',
        inputs={'X': comm_dep_vars},
        outputs={'Out': comm_dep_vars},
        attrs={'ring_id': ring_id,
               OP_ROLE_KEY: op_role})
    return 1


def insert_sync_comm_ops(block, insert_idx, ring_id, comm_dep_vars):
    """
    insert sync_comm_op for vars
    """
277 278 279 280
    # NOTE (JZ-LIANG) to be check, may result undefined case 
    if len(comm_dep_vars) == 0:
        return 0

281 282 283 284 285 286 287 288 289
    op_role = get_valid_op_role(block, insert_idx)
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_comm_stream',
        inputs={'X': comm_dep_vars},
        outputs={'Out': comm_dep_vars},
        attrs={'ring_id': int(ring_id),
               OP_ROLE_KEY: op_role})
    return 1
290 291 292 293 294 295


def insert_fill_constant_ops(block, insert_idx, fill_constant_vars):
    """
    _add_fill_constant_ops
    """
J
JZ-LIANG 已提交
296
    op_role = get_valid_op_role(block, insert_idx)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    for broadcast_name in fill_constant_vars:
        broadcast_var = block.var(broadcast_name)
        block._insert_op_without_sync(
            insert_idx,
            type="fill_constant",
            outputs={"Out": broadcast_var.name},
            attrs={
                "shape": broadcast_var.shape,
                "dtype": broadcast_var.dtype,
                "value": 0.0,
                OP_ROLE_KEY: op_role
            })
    return


def insert_cast_ops(block, insert_idx, cast_ops):
    """
    _add_cast_ops
    """
J
JZ-LIANG 已提交
316
    op_role = get_valid_op_role(block, insert_idx)
317 318 319 320 321 322 323 324 325 326 327 328 329 330
    for fp16_name, fp32_name in cast_ops.items():
        block._insert_op_without_sync(
            insert_idx,
            type="cast",
            inputs={"X": fp32_name},
            outputs={"Out": fp16_name},
            attrs={
                "in_dtype": core.VarDesc.VarType.FP32,
                "out_dtype": core.VarDesc.VarType.FP16,
                OP_ROLE_KEY: op_role
            })
    return


331 332 333 334 335
def insert_allreduce_ops(block,
                         insert_idx,
                         ring_id,
                         allreduce_vars,
                         op_role=OpRole.Backward,
336 337
                         use_calc_stream=False,
                         user_defined_strategy=None):
338 339 340
    """
    _add_allreduce_ops
    """
341 342 343
    if len(allreduce_vars) == 0:
        return

344 345 346 347 348
    if user_defined_strategy and \
            user_defined_strategy.fuse_all_reduce_ops and \
            not user_defined_strategy.fuse_grad_merge:
        # If fuse_grad_merge is enable, the grad vars have already been fused during
        # gradient merge pass, therefore, those vars are not need to be fused here
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        insert_fused_allreduce_ops(block, insert_idx, ring_id, allreduce_vars,
                                   op_role, use_calc_stream,
                                   user_defined_strategy.fuse_grad_size_in_MB)
    else:
        for var in allreduce_vars:
            block._insert_op_without_sync(
                insert_idx,
                type='c_allreduce_sum',
                inputs={'X': var},
                outputs={'Out': var},
                attrs={
                    'ring_id': ring_id,
                    'use_calc_stream': use_calc_stream,
                    OP_ROLE_KEY: op_role
                })

    return


368
class FuseHelper(object):
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    @staticmethod
    def sort_vars_by_dtype(block, vars_name):
        fp32_vars = []
        fp16_vars = []
        other_vars = []
        for var in vars_name:
            dtype = block.var(var).dtype
            if dtype == paddle.float32:
                fp32_vars.append(var)
            elif dtype == paddle.float16:
                fp16_vars.append(var)
            else:
                other_vars.append(var)
        assert len(other_vars) == 0, "only support fp32/fp16 vars for fuse"

        fp32_vars.extend(fp16_vars)
        return fp32_vars

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    @staticmethod
    def get_fused_groups(block, vars_name, fuse_size=32.):
        """ coalesce tensor, get fused group """
        groups = []
        cur_size = 0.
        last_dtype = None
        for var_name in vars_name:
            real_var = block.var(var_name)
            var_size = get_var_size(real_var)
            if cur_size + var_size > fuse_size \
                    or len(groups) == 0 \
                    or real_var.dtype != last_dtype:
                groups.append([real_var])
                cur_size = var_size
                last_dtype = real_var.dtype
            else:
                groups[-1].append(real_var)
                cur_size += var_size
        return groups

    @staticmethod
    def insert_coalesce_tensor(block,
                               index,
                               groups,
                               op_role=OpRole.Backward,
                               prefix="Output"):
        fused_vars = []
        insert_num = 0
        for group in groups:
            assert len(group) >= 1
            if len(group) == 1:
                # no need fuse
                fused_vars.append(group[0])
                continue

            fused_var = block.create_var(
                name=unique_name.generate('Fused{}_{}'.format(prefix, group[0]
                                                              .name)),
                dtype=group[0].dtype,
                persistable=False,
                stop_gradient=True)
            fused_vars.append(fused_var)
            block._insert_op_without_sync(
                index,
                type="coalesce_tensor",
                inputs={"Input": group},
                outputs={"Output": group,
                         "FusedOutput": fused_var},
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "dtype": group[0].dtype,
                    OP_ROLE_KEY: op_role
                })
            insert_num += 1
        return fused_vars, insert_num


445 446 447 448 449 450 451
def insert_fused_allreduce_ops(block,
                               insert_idx,
                               ring_id,
                               allreduce_vars,
                               op_role=OpRole.Backward,
                               use_calc_stream=False,
                               fuse_grad_size_in_MB=32):
452 453 454 455 456
    groups = FuseHelper.get_fused_groups(block, allreduce_vars,
                                         fuse_grad_size_in_MB)

    fused_vars, insert_num = FuseHelper.insert_coalesce_tensor(
        block, insert_idx, groups, op_role, prefix="Grad")
457 458 459

    for fused_var in fused_vars:
        block._insert_op_without_sync(
460
            insert_idx + insert_num,
461
            type='c_allreduce_sum',
462 463
            inputs={'X': fused_var},
            outputs={'Out': fused_var},
464 465 466 467 468
            attrs={
                'ring_id': ring_id,
                'use_calc_stream': use_calc_stream,
                OP_ROLE_KEY: op_role
            })
469 470
        if not use_calc_stream:
            block._insert_op_without_sync(
471
                insert_idx + insert_num,
472 473 474 475
                type='c_sync_calc_stream',
                inputs={'X': fused_var},
                outputs={'Out': fused_var},
                attrs={OP_ROLE_KEY: op_role})
476 477


478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
def insert_fused_reduce_ops(block,
                            insert_idx,
                            ring_id,
                            reduce_vars,
                            shard,
                            op_role=OpRole.Backward,
                            use_calc_stream=False,
                            rank=None,
                            fuse_grad_size=32):
    nranks = shard.worker_num
    device_to_vars = [[] for _ in range(nranks)]

    for var in reduce_vars:
        root_id = get_grad_device(var, shard)
        assert 0 <= root_id < nranks, "root_id should >=0 and < nranks, " \
            "but now nranks={}, the root_id of var={} is {}"\
            .format(nranks, var, root_id)
        device_to_vars[root_id].append(var)

    for root_id, vars_name in enumerate(device_to_vars):
        groups = FuseHelper.get_fused_groups(block, vars_name, fuse_grad_size)

        fused_vars, insert_num = FuseHelper.insert_coalesce_tensor(
            block, insert_idx, groups, op_role, prefix="Grad")

        for fused_var in fused_vars:
            block._insert_op_without_sync(
                insert_idx + insert_num,
                type='c_reduce_sum',
                inputs={'X': fused_var},
                outputs={'Out': fused_var},
                attrs={
                    'ring_id': ring_id,
                    'root_id': root_id,
                    'use_calc_stream': use_calc_stream,
                    OP_ROLE_KEY: op_role
                })
            if not use_calc_stream:
                block._insert_op_without_sync(
                    insert_idx + insert_num,
                    type='c_sync_calc_stream',
                    inputs={'X': fused_var},
                    outputs={'Out': fused_var},
                    attrs={OP_ROLE_KEY: op_role})

    return [] if rank is None else device_to_vars[rank]


526 527 528 529 530 531
def insert_reduce_ops(block,
                      insert_idx,
                      ring_id,
                      reduce_vars,
                      shard,
                      op_role=OpRole.Backward,
532
                      use_calc_stream=False,
533 534
                      rank=None,
                      strategy=None):
535
    """
536
    _add_reduce_ops
537
    """
538 539 540 541 542 543
    if strategy and strategy.fuse_all_reduce_ops and \
            not strategy.fuse_grad_merge:
        return insert_fused_reduce_ops(block, insert_idx, ring_id, reduce_vars,
                                       shard, op_role, use_calc_stream, rank,
                                       strategy.fuse_grad_size_in_MB)

544
    grad_in_this_device = []
545
    for var in reduce_vars:
546 547 548 549 550 551 552
        grad_var = var
        if strategy and strategy.fuse_all_reduce_ops and \
                strategy.fuse_grad_merge:
            # TODO(wangxi): if support fp16_allreduce, need be
            # 'FusedMergedGrad.cast_fp16._'
            grad_var = var.replace('FusedMergedGrad_', '')
        root_id = get_grad_device(grad_var, shard)
Z
zhangchunle 已提交
553 554
        assert root_id >= 0, "root id should be a positive int, but now root id is {}".format(
            root_id)
555 556
        if rank is not None and rank == root_id:
            grad_in_this_device.append(var)
557 558 559 560 561 562 563 564
        block._insert_op_without_sync(
            insert_idx,
            type='c_reduce_sum',
            inputs={'X': var},
            outputs={'Out': var},
            attrs={
                'ring_id': ring_id,
                'root_id': root_id,
565 566
                'use_calc_stream': use_calc_stream,
                OP_ROLE_KEY: op_role
567
            })
568 569

    return grad_in_this_device
570 571


572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
def insert_fused_broadcast_param_ops(block,
                                     insert_idx,
                                     ring_id,
                                     params,
                                     shard,
                                     op_role=OpRole.Optimize,
                                     use_calc_stream=False,
                                     rank=None,
                                     fuse_size=32):
    nranks = shard.worker_num
    device_to_vars = [[] for _ in range(nranks)]

    for var in params:
        root_id = shard.device(var)
        assert 0 <= root_id < nranks, "root_id should >=0 and < nranks, " \
            "but now nranks={}, the root_id of var={} is {}"\
            .format(nranks, var, root_id)
        device_to_vars[root_id].append(var)

    for root_id, vars_name in enumerate(device_to_vars):
        groups = FuseHelper.get_fused_groups(block, vars_name, fuse_size)

        fused_vars, insert_num = FuseHelper.insert_coalesce_tensor(
            block, insert_idx, groups, op_role, prefix="Param")

        for fused_var in fused_vars:
            block._insert_op_without_sync(
                insert_idx + insert_num,
                type='c_broadcast',
                inputs={'X': fused_var},
                outputs={'Out': fused_var},
                attrs={
                    'ring_id': ring_id,
                    'root': root_id,
                    'use_calc_stream': use_calc_stream,
                    OP_ROLE_KEY: op_role
                })
            if not use_calc_stream:
                block._insert_op_without_sync(
                    insert_idx + insert_num,
                    type='c_sync_calc_stream',
                    inputs={'X': fused_var},
                    outputs={'Out': fused_var},
                    attrs={OP_ROLE_KEY: op_role})

    return [] if rank is None else device_to_vars[rank]


def insert_broadcast_param_ops(block,
                               insert_idx,
                               ring_id,
                               params,
                               shard,
                               op_role=OpRole.Optimize,
                               use_calc_stream=False,
                               rank=None,
                               strategy=None):
    """
    add broadcast param ops
    """
    if strategy and strategy.fuse_all_reduce_ops:
        # TODO(wangxi): put fused var in startup_program, only need exec once
        return insert_fused_broadcast_param_ops(
            block, insert_idx, ring_id, params, shard, op_role, use_calc_stream,
            rank, strategy.fuse_grad_size_in_MB)

    param_in_this_device = []
    for param in params:
        root_id = shard.device(param)
        assert root_id >= 0, "root id should be a positive int, but now root id is {}".format(
            root_id)
        if rank is not None and rank == root_id:
            param_in_this_device.append(param)
        block._insert_op_without_sync(
            insert_idx,
            type='c_broadcast',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={
                'ring_id': ring_id,
                'root': root_id,
                'use_calc_stream': use_calc_stream,
                OP_ROLE_KEY: op_role
            })

    return param_in_this_device


660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
def fuse_opt_broadcast_param_ops(block,
                                 ring_id,
                                 shard,
                                 op_role=OpRole.Optimize,
                                 strategy=None):
    """
    fuse optimizer sharding broadcast param ops
    """
    if strategy is None or not strategy.fuse_all_reduce_ops:
        return

    fuse_size = strategy.fuse_grad_size_in_MB

    nranks = shard.worker_num
    device_to_vars = [[] for _ in range(nranks)]

    for idx, op in reversed(list(enumerate(block.ops))):
        if not is_optimizer_op(op) or op.type != 'c_broadcast':
            break
        var = op.input_arg_names[0]
        root_id = op.attr('root')
        device_to_vars[root_id].insert(0, var)
        block._remove_op(idx, sync=False)

    insert_idx = idx + 1
    for root_id, vars_name in enumerate(device_to_vars):
        vars_name = FuseHelper.sort_vars_by_dtype(block, vars_name)
        groups = FuseHelper.get_fused_groups(block, vars_name, fuse_size)

        fused_vars, insert_num = FuseHelper.insert_coalesce_tensor(
            block, insert_idx, groups, op_role, prefix="Param")

        for fused_var in fused_vars:
            block._insert_op_without_sync(
                insert_idx + insert_num,
                type='c_broadcast',
                inputs={'X': fused_var},
                outputs={'Out': fused_var},
                attrs={
                    'ring_id': ring_id,
                    'root': root_id,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: op_role
                })

    block._sync_with_cpp()


708 709 710 711
def get_grad_device(grad_name, shard):
    assert "@GRAD" in grad_name, "[{}] should be a grad variable.".format(
        grad_name)
    base_name = None
712
    # NOTE: mind the traversal order
713
    possible_suffixes = [
714 715 716 717 718 719 720
        # sharding gm
        '.cast_fp16@GRAD@MERGED',
        '.cast_fp16@GRAD',
        # pipeline
        '@GRAD@MERGED@FP16',
        '@GRAD@MERGED',
        '@GRAD',
721 722 723 724 725 726 727 728 729 730 731 732
    ]
    for suffix in possible_suffixes:
        if suffix in grad_name:
            base_name = re.sub(suffix, '', grad_name)
            break

    assert base_name in shard.global_param2device, "[{}] should be a param variable.".format(
        base_name)

    return shard.global_param2device[base_name]


B
Baibaifan 已提交
733
def get_first_check_finite_and_unscale_op_idx(block, raise_error=True):
734 735 736 737 738

    for idx, op in enumerate(block.ops):
        if op.type == "check_finite_and_unscale":
            return idx

B
Baibaifan 已提交
739 740 741 742 743 744
    if raise_error:
        raise ValueError(
            "amp is turned on but check_finite_and_unscale op does not exist in main block"
        )

    return -1
745 746


747 748 749 750 751 752 753 754 755
def get_first_optimize_op_idx(block):
    first_opt_op_idx = None
    for index, op in reversed(tuple(enumerate(block.ops))):
        if is_backward_op(op) and first_opt_op_idx is None:
            first_opt_op_idx = index + 1
            break
    return first_opt_op_idx


756
def insert_broadcast_ops(block, insert_idx, ring_id, broadcast2root):
757 758 759
    """
    _add_broadcast_ops
    """
J
JZ-LIANG 已提交
760
    op_role = get_valid_op_role(block, insert_idx)
761 762 763 764 765 766 767 768 769 770 771
    for broadcast_name, root_device in broadcast2root:
        block._insert_op_without_sync(
            insert_idx,
            type='c_broadcast',
            inputs={'X': broadcast_name},
            outputs={'Out': broadcast_name},
            attrs={
                'ring_id': ring_id,
                'root': root_device,
                OP_ROLE_KEY: op_role
            })
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    return


DtypeToSize = {
    core.VarDesc.VarType.FP16: 2,
    core.VarDesc.VarType.FP32: 4,
    core.VarDesc.VarType.FP64: 8,
    core.VarDesc.VarType.INT16: 2,
    core.VarDesc.VarType.INT32: 4,
    core.VarDesc.VarType.INT64: 8,
    core.VarDesc.VarType.BOOL: 1,
    core.VarDesc.VarType.UINT8: 1,
}


def get_var_size(param):
    """
    input:
        - param: var
    return:
J
JZ-LIANG 已提交
793
        var size in MB
794 795 796 797 798 799 800 801 802 803 804 805 806
    """
    assert -1 not in param.shape
    return reduce(lambda x, y: x * y,
                  param.shape) * DtypeToSize[param.dtype] / 1024.0 / 1024.0


def insert_scale_loss_grad_ops(block, scale=1.0):
    '''
    In order to keep the learning rate consistent in different numbers of
    training workers, we scale the loss grad by the number of workers
    '''
    for idx, op in reversed(list(enumerate(block.ops))):
        if is_loss_grad_op(op):
807 808 809 810 811 812 813
            assert op.type == 'fill_constant', \
                "loss_grad_op must be fill_constant op, " \
                "but this op is {}".format(op.type)
            assert op.has_attr('value')
            loss_scale = float(op.attr('value'))
            loss_scale = loss_scale / scale
            op._set_attr('value', loss_scale)
814
            break
J
JZ-LIANG 已提交
815 816 817 818 819 820 821 822 823 824 825 826


def comm_analyse(main_program):
    """
    Analyse the parameter size that need to be broadcast/allreduce during sharding training 
    """
    reduce_vars = {}
    broadcast_vars = {}
    block = main_program.global_block()
    for op in block.ops:
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
J
JZ-LIANG 已提交
827 828 829
            # convert MB to KB
            broadcast_vars[var_name] = get_var_size(block.var(
                var_name)) * 1024.0
J
JZ-LIANG 已提交
830 831
        elif op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
J
JZ-LIANG 已提交
832
            reduce_vars[var_name] = get_var_size(block.var(var_name)) * 1024.0
J
JZ-LIANG 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

    varsize_count = {}
    gap = 1

    for k, v in broadcast_vars.items():
        print("broadcast: {}: {} KB".format(k, v))
        if (int(v / gap) in varsize_count):
            varsize_count[int(v / gap)] += 1
        else:
            varsize_count[int(v / gap)] = 1

    for k, v in reduce_vars.items():
        print("allreduce: {}: {} KB".format(k, v))
        if (int(v / gap) in varsize_count):
            varsize_count[int(v / gap)] += 1
        else:
            varsize_count[int(v / gap)] = 1

    with open("nccl_size.txt", 'w') as f:
        sorted_varsize = sorted(varsize_count.items(), key=lambda x: x[0])
        for varsize, count in sorted_varsize:
            print("NCCL size {}~{} KB: {}".format(varsize, varsize + 1, count))
            f.write("NCCL size {}~{} KB: {}\n".format(varsize, varsize + 1,
                                                      count))


859
def add_sync_comm(program, sharding_ring_id):
J
JZ-LIANG 已提交
860 861 862 863 864 865
    """
    When clone a test prog by clone from the sharding main prog, 
    part of the sync_comm op maybe be pruned by mistake, this function
    add the sync_comm op for the test prog.

    """
866
    #NOTE (liangjianzhong): only support one comm stream by now, use more than one
J
JZ-LIANG 已提交
867 868
    # comm streams will cause error. should be revise in future.

869
    assert sharding_ring_id >= 0, "sharding_ring_id should larger than zero"
J
JZ-LIANG 已提交
870 871 872 873 874 875 876 877 878 879
    block = program.global_block()
    not_sync_vars = set([])
    for op in block.ops:
        if op.type in ["c_broadcast", "c_allreduce"]:
            for input_name in op.desc.input_arg_names():
                not_sync_vars.add(input_name)
        if op.type == "c_sync_comm_stream":
            for input_name in op.desc.input_arg_names():
                not_sync_vars.remove(input_name)
    if not_sync_vars:
880 881 882 883 884 885 886 887
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': list(not_sync_vars)},
            outputs={'Out': list(not_sync_vars)},
            attrs={
                'ring_id': sharding_ring_id,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            })
J
JZ-LIANG 已提交
888 889 890
    return


J
JZ-LIANG 已提交
891
def save_persistables(exe, dirname, main_program, filename=None):
J
JZ-LIANG 已提交
892 893 894 895 896
    """
    When use sharding, part of persistable vars are unique and are partitioned in different ranks,
    and part of persistable vars are duplicated and exist in all the ranks with different values.
    This function handles the model saving for sharding training.
    """
897 898
    # TODO (JZ-LIANG) revise this for uniform mixed parallelism
    if main_program._pipeline_opt:
L
lilong12 已提交
899
        main_program = main_program._pipeline_opt['section_program']
J
JZ-LIANG 已提交
900 901

    def is_opt_vars(var):
902
        # NOTE(JZ-LIANG): The checks should be updated when add new compatible optimizer
903 904 905
        # now only Momentum and adam are compatible with sharding,
        # support EMA optimizer with '_ema_0',
        # support offload with '@offload_0' and '.cast_fp16'
J
JZ-LIANG 已提交
906 907
        checks = [
            "_moment1_0", "_moment2_0", "_beta1_pow_acc_0", "_beta2_pow_acc_0",
908
            "_velocity_0", "_ema_0", "@offload_0", ".cast_fp16"
J
JZ-LIANG 已提交
909 910
        ]
        for check in checks:
D
duanboqiang 已提交
911
            if var.name.endswith(check) and var.persistable:
J
JZ-LIANG 已提交
912 913 914
                return True
        return False

915 916 917 918 919
    def is_gradient_merge_vars(var):
        # NOTE(JZ-LIANG): to revise save/load logic in framework instead of write this naive rule

        return var.name.endswith("@GradiantMerge")

J
JZ-LIANG 已提交
920 921 922 923 924
    def is_trainable(var):
        return isinstance(var,
                          paddle.fluid.framework.Parameter) and var.trainable

    def sharding_predicate(var):
925 926
        return is_trainable(var) or is_opt_vars(var) or is_gradient_merge_vars(
            var)
J
JZ-LIANG 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939

    if int(os.environ.get('PADDLE_TRAINER_ID', 0)) == 0:
        paddle.fluid.io.save_persistables(
            exe, dirname, main_program=main_program, filename=None)
    else:
        paddle.fluid.io.save_vars(
            exe,
            dirname,
            main_program=main_program,
            predicate=sharding_predicate,
            filename=None)

    return
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961


def append_naive_sync(block, sync_var, ring_id):
    # NOTE (JZ-LIANG) update this to use barrier sync for more elegent logic
    # sync within global 
    block.append_op(
        type="fill_constant",
        outputs={"Out": sync_var},
        attrs={
            "shape": sync_var.shape,
            "dtype": sync_var.dtype,
            "value": int(1),
        })
    block.append_op(
        type='c_allreduce_sum',
        inputs={'X': sync_var},
        outputs={'Out': sync_var},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': True,
            OP_ROLE_KEY: OpRole.Forward
        })
962 963 964 965 966
    block.append_op(
        type='c_sync_calc_stream',
        inputs={'X': [sync_var]},
        outputs={'Out': [sync_var]},
        attrs={OP_ROLE_KEY: OpRole.Forward})