engine_api.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
17
import tempfile
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine
34 35
from paddle.optimizer.lr import CosineAnnealingDecay
from paddle.fluid.dataloader.collate import default_collate_fn
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10

paddle.seed(44)


class MyDataset(Dataset):
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __init__(self, num_samples):
        super(MyDataset, self).__init__()
        self.num_samples = num_samples

    def __getitem__(self, index):
        input = np.random.uniform(size=image_size).astype("float32")
        label = np.random.randint(0, class_num - 1, dtype="int64")
        return input, label

    def __len__(self):
        return self.num_samples


class MLPLayer(nn.Layer):
67

68 69 70 71 72 73 74 75
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
76 77
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
78 79
        bias_attr = None

80 81 82 83 84 85 86 87
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
88 89 90 91 92
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
93
        out = auto.shard_op(self.norm, dist_attr={"process_mesh":
Z
zhaoyingli 已提交
94
                                                  PP_MESH_0})(input)
95
        out = self.linear0(out)
96
        out = F.gelu(out, approximate=True)
97
        out = auto.shard_op(self.linear1, dist_attr={"process_mesh":
Z
zhaoyingli 已提交
98
                                                     PP_MESH_1})(out)
99 100
        out = self.dropout(out)
        out = self.linear2(out)
101
        self.out = out
102 103 104
        return out


105
def train(fetch):
106 107 108 109
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
110
    loss = paddle.nn.CrossEntropyLoss()
111
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
112 113 114 115
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
116

117 118
    inputs_spec = InputSpec([batch_size, hidden_size], 'float32', 'x')
    labels_spec = InputSpec([batch_size], 'int64', 'label')
119 120 121 122 123

    dist_strategy = fleet.DistributedStrategy()
    dist_strategy.semi_auto = True
    fleet.init(is_collective=True, strategy=dist_strategy)

124
    # init engine
125 126 127 128
    engine = Engine(mlp,
                    inputs_spec=inputs_spec,
                    labels_spec=labels_spec,
                    strategy=dist_strategy)
129 130
    engine.prepare(optimizer, loss, metrics=paddle.metric.Accuracy())

131 132 133 134 135 136
    # fetch
    if fetch:
        fetches = {'out': mlp.out}
    else:
        fetches = None

137 138 139
    # train
    train_dataset = MyDataset(batch_num * batch_size)
    engine.fit(train_dataset,
140
               batch_size=batch_size,
141
               steps_per_epoch=batch_num * batch_size,
142
               fetches=fetches)
143

144
    # eval
145
    eval_dataset = MyDataset(batch_size)
146
    engine.evaluate(eval_dataset, batch_size, fetches=fetches)
147

148
    # predict
149
    test_dataset = MyDataset(batch_size)
150
    engine.predict(test_dataset, batch_size, fetches=fetches)
151 152

    # save
153 154 155 156
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp_inf')
    engine.save(model_filename, training=False, mode='predict')
    temp_dir.cleanup()
157 158 159


if __name__ == "__main__":
160 161
    train(fetch=True)
    train(fetch=False)