engine_api.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
17
import tempfile
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine

paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10

paddle.seed(44)


class MyDataset(Dataset):
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def __init__(self, num_samples):
        super(MyDataset, self).__init__()
        self.num_samples = num_samples

    def __getitem__(self, index):
        input = np.random.uniform(size=image_size).astype("float32")
        label = np.random.randint(0, class_num - 1, dtype="int64")
        return input, label

    def __len__(self):
        return self.num_samples


class MLPLayer(nn.Layer):
65

66 67 68 69 70 71 72 73
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
74 75
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
76 77
        bias_attr = None

78 79 80 81 82 83 84 85
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
86 87 88 89 90
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
91 92
        out = auto.shard_op(self.norm, dist_attr={"process_mesh":
                                                  PP_MESH_0})(input)[0]
93
        out = self.linear0(out)
94
        out = F.gelu(out, approximate=True)
95 96
        out = auto.shard_op(self.linear1, dist_attr={"process_mesh":
                                                     PP_MESH_1})(out)[0]
97 98
        out = self.dropout(out)
        out = self.linear2(out)
99
        self.out = out
100 101 102
        return out


103
def train(fetch):
104 105 106 107
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
108
    loss = paddle.nn.CrossEntropyLoss()
109 110 111 112 113
    optimizer = paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.00001,
                                                     beta1=0.9,
                                                     beta2=0.999,
                                                     epsilon=1e-08,
                                                     grad_clip=None)
114

115 116
    inputs_spec = InputSpec([batch_size, hidden_size], 'float32', 'x')
    labels_spec = InputSpec([batch_size], 'int64', 'label')
117 118 119 120 121 122 123 124

    dist_strategy = fleet.DistributedStrategy()
    dist_strategy.amp = False
    dist_strategy.pipeline = False
    dist_strategy.recompute = False
    dist_strategy.semi_auto = True
    fleet.init(is_collective=True, strategy=dist_strategy)

125
    # init engine
126 127 128 129
    engine = Engine(mlp,
                    inputs_spec=inputs_spec,
                    labels_spec=labels_spec,
                    strategy=dist_strategy)
130 131
    engine.prepare(optimizer, loss, metrics=paddle.metric.Accuracy())

132 133 134 135 136 137
    # fetch
    if fetch:
        fetches = {'out': mlp.out}
    else:
        fetches = None

138 139 140
    # train
    train_dataset = MyDataset(batch_num * batch_size)
    engine.fit(train_dataset,
141
               batch_size=batch_size,
142
               steps_per_epoch=batch_num * batch_size,
143
               fetches=fetches)
144

145
    # eval
146
    eval_dataset = MyDataset(batch_size)
147
    engine.evaluate(eval_dataset, batch_size, fetches=fetches)
148

149
    # predict
150
    test_dataset = MyDataset(batch_size)
151
    engine.predict(test_dataset, batch_size, fetches=fetches)
152 153

    # save
154 155 156 157
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp_inf')
    engine.save(model_filename, training=False, mode='predict')
    temp_dir.cleanup()
158 159 160


if __name__ == "__main__":
161 162
    train(fetch=True)
    train(fetch=False)