engine_api.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
17
import tempfile
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
import copy
import os
import numpy as np
import subprocess
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
from paddle.static import InputSpec
from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
from paddle.distributed.auto_parallel.engine import Engine
34 35
from paddle.optimizer.lr import CosineAnnealingDecay
from paddle.fluid.dataloader.collate import default_collate_fn
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10

paddle.seed(44)


class MyDataset(Dataset):
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __init__(self, num_samples):
        super(MyDataset, self).__init__()
        self.num_samples = num_samples

    def __getitem__(self, index):
        input = np.random.uniform(size=image_size).astype("float32")
        label = np.random.randint(0, class_num - 1, dtype="int64")
        return input, label

    def __len__(self):
        return self.num_samples


class MLPLayer(nn.Layer):
67

68 69 70 71 72 73 74 75
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
76 77
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
78 79
        bias_attr = None

80 81 82 83 84 85 86 87
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
88 89 90 91 92
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
93
        out = auto.shard_op(self.norm, dist_attr={"process_mesh":
Z
zhaoyingli 已提交
94
                                                  PP_MESH_0})(input)
95
        out = self.linear0(out)
96
        out = F.gelu(out, approximate=True)
97
        out = auto.shard_op(self.linear1, dist_attr={"process_mesh":
Z
zhaoyingli 已提交
98
                                                     PP_MESH_1})(out)
99 100
        out = self.dropout(out)
        out = self.linear2(out)
101
        self.out = out
102 103 104
        return out


105
def train(fetch):
106 107 108 109
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
110
    loss = paddle.nn.CrossEntropyLoss()
111 112 113 114 115 116 117
    scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.00001,
                                                         T_max=10)
    optimizer = paddle.optimizer.Adam(learning_rate=scheduler,
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
118

119 120
    inputs_spec = InputSpec([batch_size, hidden_size], 'float32', 'x')
    labels_spec = InputSpec([batch_size], 'int64', 'label')
121 122 123 124 125

    dist_strategy = fleet.DistributedStrategy()
    dist_strategy.semi_auto = True
    fleet.init(is_collective=True, strategy=dist_strategy)

126
    # init engine
127 128 129 130
    engine = Engine(mlp,
                    inputs_spec=inputs_spec,
                    labels_spec=labels_spec,
                    strategy=dist_strategy)
131 132
    engine.prepare(optimizer, loss, metrics=paddle.metric.Accuracy())

133 134 135 136 137 138
    # fetch
    if fetch:
        fetches = {'out': mlp.out}
    else:
        fetches = None

139 140 141
    # train
    train_dataset = MyDataset(batch_num * batch_size)
    engine.fit(train_dataset,
142
               batch_size=batch_size,
143
               steps_per_epoch=batch_num * batch_size,
144
               fetches=fetches)
145

146
    # eval
147
    eval_dataset = MyDataset(batch_size)
148
    engine.evaluate(eval_dataset, batch_size, fetches=fetches)
149

150
    # predict
151
    test_dataset = MyDataset(batch_size)
152
    engine.predict(test_dataset, batch_size, fetches=fetches)
153 154

    # save
155 156 157 158
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp_inf')
    engine.save(model_filename, training=False, mode='predict')
    temp_dir.cleanup()
159 160 161


if __name__ == "__main__":
162 163
    train(fetch=True)
    train(fetch=False)