loss.py 76.4 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17
import paddle

18
# TODO: define loss functions of neural network
L
Leo Chen 已提交
19
import paddle.fluid as fluid
20
from paddle import in_dynamic_mode
21
from paddle.fluid.framework import in_dygraph_mode
22

Z
zhiboniu 已提交
23
from .. import Layer
24
from .. import functional as F
25

26 27
__all__ = []

L
Leo Chen 已提交
28

Z
zhiboniu 已提交
29
class BCEWithLogitsLoss(Layer):
30
    r"""
31 32

    This operator combines the sigmoid layer and the :ref:`api_paddle_nn_BCELoss` layer.
33 34 35 36 37 38 39 40 41 42

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
43
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
44

45
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
46 47

    .. math::
48
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
49

50
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
51 52
    we reformulate the loss as follows:

53
        .. math::
54
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
85 86 87 88 89 90 91 92
        - logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, `*`],
          N is batch_size, `*` means number of additional dimensions. The ``logit``
          is usually the output of Linear layer. Available dtype is float32, float64.
        - label (Tensor): The target labels tensor. 2-D tensor with the same shape as
          ``logit``. The target labels which values should be numbers between 0 and 1.
          Available dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
          same as ``logit`` , else the shape of output is scalar.
93 94 95 96 97 98

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:
        .. code-block:: python
99

100 101 102 103 104
            import paddle
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
105 106 107
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.45618814])
108 109 110

    """

111 112 113
    def __init__(
        self, weight=None, reduction='mean', pos_weight=None, name=None
    ):
114 115 116
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
117 118
                "received %s, which is not allowed." % reduction
            )
119

120
        super().__init__()
121 122 123 124 125 126 127
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
128 129 130 131 132 133 134
            logit,
            label,
            self.weight,
            self.reduction,
            self.pos_weight,
            self.name,
        )
135 136 137
        return out


Z
zhiboniu 已提交
138
class CrossEntropyLoss(Layer):
139
    r"""
140

141 142
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
143
    to provide a more numerically stable computing.
S
swtkiwi 已提交
144

145
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
146

147 148
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
149
    parameters for details.
150

151
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
152
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
153
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
154

155
    The calculation of this operator includes the following two steps.
156

157
    -  **I.softmax cross entropy**
158

159
        1. Hard label (each sample can only be assigned into one category)
160

161
        1.1. when use_softmax=True
162

163 164
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
165

166
            where, N is the number of samples and C is the number of categories.
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



194
    -  **II.Weight and reduction processing**
195 196 197 198 199 200 201 202 203 204 205

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
206
                \\loss_j=loss_j*weight[label_j]
207

208

209 210 211 212 213 214 215
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

216
            2.1 if the ``reduction`` parameter is ``none``
217 218 219

            Return the previous result directly

220
            2.2 if the ``reduction`` parameter is ``sum``
221 222 223 224 225 226

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

227 228
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
229

230
            2.3.1. If the  ``weight``  parameter is ``None``
231 232 233 234 235 236 237 238 239 240 241 242 243

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
244
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
245 246 247 248 249

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
250 251


252
    Parameters:
253
        weight (Tensor, optional): a manual rescaling weight given to each class.
254
            If given, has to be a Tensor of size C and the data type is float32, float64.
255
            Default is ``'None'`` .
256
        ignore_index (int64, optional): Specifies a target value that is ignored
257 258
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
259
            Default is ``-100`` .
260
        reduction (str, optional): Indicate how to average the loss by batch_size,
261 262 263 264 265
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
266
        soft_label (bool, optional): Indicate whether label is soft.
267 268
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
269
        axis (int, optional): The index of dimension to perform softmax calculations.
270 271
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number
            of dimensions of input :attr:`input`.
272
            Default is ``-1`` .
273
        use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
274
            Default is ``True``.
275
        name (str, optional): The name of the operator. Default is ``None`` .
276 277 278 279
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:
280 281
        - **input** (Tensor), the data type is float32, float64. Shape is
          :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
282
            Note:
283

284
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
285 286 287
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
288

289 290
        - **label** (Tensor)

291
            1. If soft_label=False, the shape is
292 293 294
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

295
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
296
            and the sum of the labels for each sample should be 1.
297

298 299 300 301
        - **output** (Tensor), Return the softmax cross_entropy loss of ``input`` and ``label``.
          The data type is the same as input.
          If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
          If :attr:`reduction` is ``'none'``:
302

303
            1. If soft_label = False, the dimension of return value is the same with ``label`` .
304

305
            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
306

307
    Examples:
308 309

        .. code-block:: python
310

311
            # hard labels
312 313 314 315 316
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
317
            input =  paddle.rand([N, C], dtype='float64')
318
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
319 320
            weight = paddle.rand([C], dtype='float64')

321 322 323
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
324 325 326 327 328
                                        input,
                                        label)
            print(dy_ret)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [5.34043430])
329

330
        .. code-block:: python
331 332

            # soft labels
333
            import paddle
334 335 336 337 338 339 340 341 342 343 344 345
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
346 347 348 349 350 351 352 353 354
                                                                    logits,
                                                                    labels,
                                                                    soft_label=True,
                                                                    axis=axis,
                                                                    weight=weight,
                                                                    reduction=reduction)
            print(paddle_loss_mean)
            # Tensor(shape=[1], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [1.11043464])
355

356 357
    """

358 359 360 361 362 363 364 365 366 367
    def __init__(
        self,
        weight=None,
        ignore_index=-100,
        reduction='mean',
        soft_label=False,
        axis=-1,
        use_softmax=True,
        name=None,
    ):
368
        super().__init__()
369 370
        self.weight = weight
        self.reduction = reduction
371
        self.ignore_index = ignore_index
372 373
        self.soft_label = soft_label
        self.axis = axis
374
        self.use_softmax = use_softmax
375
        self.name = name
376 377

    def forward(self, input, label):
378 379 380 381 382 383 384 385 386 387 388
        ret = paddle.nn.functional.cross_entropy(
            input,
            label,
            weight=self.weight,
            ignore_index=self.ignore_index,
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
            use_softmax=self.use_softmax,
            name=self.name,
        )
389 390

        return ret
391 392


Z
zhiboniu 已提交
393
class HSigmoidLoss(Layer):
394 395
    """
    Hierarchical Sigmoid Layer.
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
431
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

L
Linjie Chen 已提交
450 451 452 453 454
            input = paddle.uniform([4, 3])
            # [[0.56194401  -0.22450298  -0.10741806] # random
            #  [0.36136317  0.23556745  0.88748658] # random
            #  [0.18151939  0.80947340  -0.31078976] # random
            #  [0.68886101  -0.14239830  -0.41297770]] # random
455 456 457
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
L
Linjie Chen 已提交
458 459 460 461
            # [[2.42524505]
            #  [1.74917245]
            #  [3.14571381]
            #  [2.34564662]]
462 463
    """

464 465 466 467 468 469 470 471 472 473
    def __init__(
        self,
        feature_size,
        num_classes,
        weight_attr=None,
        bias_attr=None,
        is_custom=False,
        is_sparse=False,
        name=None,
    ):
474
        super().__init__()
475 476
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
477 478
                "num_classes must not be less than 2 with default tree"
            )
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
496 497 498 499
        print(
            "With sparse mode, if your models has only"
            " small parameter prefetch may cause speed down"
        )
500 501

        C = self._num_classes if is_custom else self._num_classes - 1
502 503 504 505 506 507 508 509 510
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype,
        )
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype
        )
511 512

    def forward(self, input, label, path_table=None, path_code=None):
513 514 515 516 517 518 519 520 521 522 523
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name,
        )
524 525 526
        return out


Z
zhiboniu 已提交
527
class MSELoss(Layer):
528
    r"""
529 530 531 532 533 534 535 536 537 538 539
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.
    If :attr:`reduction` is set to ``'none'``, loss is calculated as:
    .. math::
        Out = (input - label)^2
    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
    .. math::
        Out = \operatorname{mean}((input - label)^2)
    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
    .. math::
        Out = \operatorname{sum}((input - label)^2)
540
    where `input` and `label` are `float32` tensors of same shape.
541 542 543
    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
544 545 546
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
547
            Default is ``'mean'``.
B
Bai Yifan 已提交
548 549 550 551
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
552 553
    Examples:
        .. code-block:: python
554
            import paddle
B
Bai Yifan 已提交
555
            mse_loss = paddle.nn.loss.MSELoss()
556 557
            input = paddle.to_tensor([1.5])
            label = paddle.to_tensor([1.7])
B
Bai Yifan 已提交
558
            output = mse_loss(input, label)
559
            print(output)
B
Bai Yifan 已提交
560
            # [0.04000002]
561 562 563
    """

    def __init__(self, reduction='mean'):
564
        super().__init__()
565 566 567
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
568 569
                "but received {}.".format(reduction)
            )
570 571 572
        self.reduction = reduction

    def forward(self, input, label):
Z
zhiboniu 已提交
573
        if not in_dynamic_mode():
574 575 576 577 578 579
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss'
            )
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss'
            )
580

581
        if in_dygraph_mode():
582
            square_out = paddle._C_ops.square(paddle.subtract(input, label))
583 584
        else:
            square_out = paddle.square(paddle.subtract(input, label))
585 586 587 588 589
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
590 591
            square_out = paddle.sum(square_out)
            return square_out
592

593
        return paddle.mean(square_out)
594 595


Z
zhiboniu 已提交
596
class L1Loss(Layer):
597
    r"""
598

599
    Construct a callable object of the ``L1Loss`` class.
600
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
601

602
    If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
603 604

    .. math::
605
        Out = \lvert input - label\rvert
606

607
    If `reduction` set to ``'mean'``, the loss is:
608

L
Leo Chen 已提交
609
    .. math::
610
        Out = MEAN(\lvert input - label\rvert)
611

612
    If `reduction` set to ``'sum'``, the loss is:
613

L
Leo Chen 已提交
614
    .. math::
615
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
616

617

L
Leo Chen 已提交
618
    Parameters:
619
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
620
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
621 622 623
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
624
            Default is ``'mean'``.
625 626 627
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
628 629 630 631 632
        - input (Tensor): The input tensor. The shapes is ``[N, *]``, where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        - label (Tensor): label. The shapes is ``[N, *]``, same shape as ``input`` . It's data type should be float32, float64, int32, int64.
        - output (Tensor): The L1 Loss of ``input`` and ``label``.
          If `reduction` is ``'none'``, the shape of output loss is ``[N, *]``, the same as ``input`` .
          If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
633

L
Leo Chen 已提交
634 635
    Examples:
        .. code-block:: python
636

L
Leo Chen 已提交
637
            import paddle
638

639 640
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
641

C
Chen Long 已提交
642
            l1_loss = paddle.nn.L1Loss()
643
            output = l1_loss(input, label)
644 645 646
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.34999999])
647

C
Chen Long 已提交
648
            l1_loss = paddle.nn.L1Loss(reduction='sum')
649
            output = l1_loss(input, label)
650 651 652
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.39999998])
653

C
Chen Long 已提交
654
            l1_loss = paddle.nn.L1Loss(reduction='none')
655
            output = l1_loss(input, label)
C
Chen Long 已提交
656
            print(output)
657 658 659
            # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.20000005, 0.19999999],
            #         [0.20000000, 0.79999995]])
660

L
Leo Chen 已提交
661 662
    """

663
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
664 665 666
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
667 668
                "received %s, which is not allowed." % reduction
            )
669
        super().__init__()
L
Leo Chen 已提交
670
        self.reduction = reduction
671
        self.name = name
L
Leo Chen 已提交
672

673
    def forward(self, input, label):
674 675 676
        return paddle.nn.functional.l1_loss(
            input, label, self.reduction, name=self.name
        )
C
ceci3 已提交
677 678


Z
zhiboniu 已提交
679
class BCELoss(Layer):
C
ceci3 已提交
680
    """
681

C
ceci3 已提交
682
    This interface is used to construct a callable object of the ``BCELoss`` class.
683 684
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
685

C
ceci3 已提交
686
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
687 688

    .. math::
C
ceci3 已提交
689
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
690

C
ceci3 已提交
691
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
692 693

    .. math::
C
ceci3 已提交
694 695
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

696
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
697

C
ceci3 已提交
698
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
699

C
ceci3 已提交
700 701
    .. math::
        Out = MEAN(Out)
702

C
ceci3 已提交
703
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
704

C
ceci3 已提交
705 706
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
707

708
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
709 710
    should be numbers between 0 and 1.

C
ceci3 已提交
711
    Parameters:
712 713
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
714
            is float32, float64. Default is ``'None'``.
715
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
716
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
717
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
718
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
719
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
720
            Default is ``'mean'``.
721 722 723 724
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
725 726 727 728 729 730 731 732
        - input (Tensor): 2-D tensor with shape: ``[N, *]``, N is batch_size, `*` means
          number of additional dimensions. The input ``input`` should always
          be the output of sigmod.  Available dtype is float32, float64.
        - label (Tensor): 2-D tensor with the same shape as ``input``. The target
          labels which values should be numbers between 0 and 1. Available
          dtype is float32, float64.
        - output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
          same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
733

734
    Returns:
C
ceci3 已提交
735 736
        A callable object of BCELoss.

C
ceci3 已提交
737 738
    Examples:
        .. code-block:: python
C
ceci3 已提交
739

C
ceci3 已提交
740
            import paddle
741

742 743
            input = paddle.to_tensor([0.5, 0.6, 0.7])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
C
Chen Long 已提交
744
            bce_loss = paddle.nn.BCELoss()
745
            output = bce_loss(input, label)
746 747 748
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.65537101])
749

C
ceci3 已提交
750 751
    """

752
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
753 754 755
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
756 757
                "received %s, which is not allowed." % reduction
            )
C
ceci3 已提交
758

759
        super().__init__()
C
ceci3 已提交
760 761
        self.weight = weight
        self.reduction = reduction
762
        self.name = name
C
ceci3 已提交
763 764

    def forward(self, input, label):
765 766 767
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name
        )
768
        return out
769 770


Z
zhiboniu 已提交
771
class NLLLoss(Layer):
772
    r"""
S
swtkiwi 已提交
773

774
    This class accepts input and target label and returns negative log likelihood
775
    cross error. It is useful to train a classification problem with C classes.
776

777
    The input for the loss is expected to contain log-probabilities of
778
    each classes. It has to be a Tensor of size either (batch_size, C) or
779 780 781 782
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
783

784 785 786
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
787

788 789 790 791
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
792 793

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
794
        l_n = - w_{y_n} x_{n,y_n}, \quad
795
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore_index}\},
796 797 798 799 800

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
801 802 803 804 805 806 807 808 809 810

        \ell(x, y) =
        \left\{
            \begin{array}{lcl}
            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
            \text{if  reduction} = \text{'mean';}\\
            \sum_{n=1}^N l_n,  &
            \text{if  reduction} = \text{'sum'.}
            \end{array}
        \right.
811 812

    Parameters:
813 814
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
815
            it treated as if having all ones. the data type is
816
            float32, float64, Default is ``'None'``.
817
        ignore_index (int, optional): Specifies a target value that is ignored
818
            and does not contribute to the input gradient.
819
        reduction (str, optional): Indicate how to average the loss,
820
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
821 822 823
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
824
            Default is ``'mean'``.
825
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
826

827
    Shape:
828
        - input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
829 830
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
831
        - label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
832
            The data type is int64.
833
        - output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
834 835
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
836 837 838 839

    Examples:
        .. code-block:: python

840
                import paddle
841

842
                nll_loss = paddle.nn.loss.NLLLoss()
843
                log_softmax = paddle.nn.LogSoftmax(axis=1)
844

845 846 847 848 849
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
850
                log_out = log_softmax(input)
851
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
852
                result = nll_loss(log_out, label)
853
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
854

855
    """
856

857 858 859
    def __init__(
        self, weight=None, ignore_index=-100, reduction='mean', name=None
    ):
860
        if reduction not in ['sum', 'mean', 'none']:
861
            raise ValueError(
862
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
863 864
                "'none', but received %s, which is not allowed." % reduction
            )
865
        super().__init__()
866 867 868 869
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
870

871
    def forward(self, input, label):
872 873 874 875 876 877 878 879
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name,
        )
880 881


Z
zhiboniu 已提交
882
class KLDivLoss(Layer):
883
    r"""
884

885 886 887 888
    Generate a callable object of 'KLDivLoss' to calculate the
    Kullback-Leibler divergence loss between Input(X) and
    Input(Target). Notes that Input(X) is the log-probability
    and Input(Target) is the probability.
889 890 891 892 893 894

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
L
LielinJiang 已提交
895 896 897 898 899 900 901
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
902 903

    Shape:
904 905
        - input (Tensor): ``(N, *)``, where ``*`` means, any number of additional dimensions.
        - label (Tensor): ``(N, *)``, same shape as input.
906
        - output (Tensor): tensor with shape: [1] by default.
907 908 909 910 911 912

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
913

914
            shape = (5, 20)
915 916
            x = paddle.uniform(shape, min=-10, max=10).astype('float32')
            target = paddle.uniform(shape, min=-10, max=10).astype('float32')
917

L
LielinJiang 已提交
918
            # 'batchmean' reduction, loss shape will be [1]
919
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
920
            pred_loss = kldiv_criterion(x, target)
L
LielinJiang 已提交
921
            # shape=[1]
922

923 924
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
925
            pred_loss = kldiv_criterion(x, target)
926 927 928 929
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
930
            pred_loss = kldiv_criterion(x, target)
931 932 933 934
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
935
            pred_loss = kldiv_criterion(x, target)
936
            # shape=[5, 20]
937

938 939 940
    """

    def __init__(self, reduction='mean'):
941
        super().__init__()
942 943 944
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
945
        out = F.kl_div(input, label, self.reduction)
946 947 948
        return out


Z
zhiboniu 已提交
949
class MarginRankingLoss(Layer):
950
    r"""
951 952

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
953
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
954 955
    , use the math function as follows.

956
    .. math::
957
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

976
    Shape:
977

N
Noel 已提交
978 979
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

980
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
981

982
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
983

984
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
985 986 987 988 989 990 991 992

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

993 994
            import paddle

C
Chen Long 已提交
995 996
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
997
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
998
            margin_rank_loss = paddle.nn.MarginRankingLoss()
999
            loss = margin_rank_loss(input, other, label)
1000 1001 1002

            print(loss)
            # [0.75]
1003 1004 1005 1006 1007
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1008
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
1009 1010
                "received %s, which is not allowed." % reduction
            )
1011
        super().__init__()
1012 1013 1014 1015
        self.margin = margin
        self.reduction = reduction
        self.name = name

1016
    def forward(self, input, other, label):
1017 1018 1019
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, label, self.margin, self.reduction, self.name
        )
1020
        return out
1021 1022


Z
zhiboniu 已提交
1023
class CTCLoss(Layer):
1024 1025
    """

1026 1027 1028
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1029 1030 1031 1032 1033 1034 1035
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1036
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1037 1038 1039
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1040
        norm_by_times (bool, default false) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
1041 1042 1043

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

1061
            log_probs = paddle.to_tensor([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
1074 1075 1076 1077 1078
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]], dtype="float32")
            labels = paddle.to_tensor([[1, 2, 2],
                            [1, 2, 2]], dtype="int32")
            input_lengths = paddle.to_tensor([5, 5], dtype="int64")
            label_lengths = paddle.to_tensor([3, 3], dtype="int64")
1079

1080 1081
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1082
                label_lengths)
1083 1084 1085
            print(loss)
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [3.91798496, 2.90765190])
1086

1087 1088
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1089
                label_lengths)
1090 1091 1092
            print(loss)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.13760614])
1093 1094 1095
    """

    def __init__(self, blank=0, reduction='mean'):
1096
        super().__init__()
1097 1098 1099
        self.blank = blank
        self.reduction = reduction

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    def forward(
        self,
        log_probs,
        labels,
        input_lengths,
        label_lengths,
        norm_by_times=False,
    ):
        return paddle.nn.functional.ctc_loss(
            log_probs,
            labels,
            input_lengths,
            label_lengths,
            self.blank,
            self.reduction,
            norm_by_times=norm_by_times,
        )
1117 1118


Z
zhiboniu 已提交
1119
class SmoothL1Loss(Layer):
1120
    r"""
1121 1122 1123 1124 1125 1126 1127
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1128
        loss(x, y) = \frac{1}{n}\sum_{i}z_i
1129

1130
    where :math:`z_i` is given by:
1131 1132 1133

    .. math::

1134
        \mathop{z_i} = \left\{\begin{array}{rcl}
1135 1136 1137
                0.5(x_i - y_i)^2 & & {if |x_i - y_i| < \delta} \\
                \delta * |x_i - y_i| - 0.5 * \delta^2 & & {otherwise}
            \end{array} \right.
1138 1139 1140 1141 1142 1143 1144 1145

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1146
        delta (float, optional): Specifies the hyperparameter :math:`\delta` to be used.
1147 1148
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
1149 1150
            negative/zero values. Default value is :math:`1.0`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1151 1152 1153

    Call Parameters:

1154 1155
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C),
        where C is number of classes, and if shape is more than 2D,
1156 1157
        this is (N, C, D1, D2,..., Dk), k >= 1.

1158
        label (Tensor): Label tensor, the data type is float32 or float64.
1159
        The shape of label is the same as the shape of input.
1160

1161 1162
    Returns:
        Tensor, The tensor storing the smooth_l1_loss of input and label.
1163 1164 1165 1166 1167

    Examples:
        .. code-block:: python

            import paddle
1168 1169
            input = paddle.rand([3, 3]).astype("float32")
            label = paddle.rand([3, 3]).astype("float32")
1170 1171
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1172
            print(output)
1173
            # [0.049606]
1174 1175 1176
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
1177
        super().__init__()
1178 1179 1180 1181 1182
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
1183 1184 1185 1186 1187 1188 1189
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name,
        )
1190 1191


Y
yangguohao 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
class MultiLabelSoftMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class multi-classification
        hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
        and output :math:`y` (which is a 2D `Tensor` of target class indices).
        For each sample in the mini-batch:

        .. math::
            \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

        where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
        :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
        :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
        and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
        :math:`y` and :math:`x` must have the same size.

        Parameters:
1208
            weight (Tensor,optional): a manual rescaling weight given to each class.
Y
yangguohao 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

        Call parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

        Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

        Returns:
            A callable object of MultiLabelSoftMarginLoss.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn as nn

                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='none')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([1.54908717])
        """

    def __init__(self, weight=None, reduction="mean", name=None):
1253
        super().__init__()
Y
yangguohao 已提交
1254 1255 1256
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiLabelSoftMarginloss' should be 'sum', 'mean' or 'none', "
1257 1258
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1259 1260 1261 1262 1263
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1264 1265 1266 1267 1268 1269 1270
        return F.multi_label_soft_margin_loss(
            input,
            label,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1271 1272


1273 1274
class HingeEmbeddingLoss(Layer):
    r"""
1275
    Create a callable object of `HingeEmbeddingLoss` to calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:

        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:

        Tensor, The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([0.22222222])
    """

    def __init__(self, margin=1.0, reduction="mean", name=None):
1354
        super().__init__()
1355 1356 1357 1358 1359
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1360 1361 1362 1363 1364 1365 1366
        return F.hinge_embedding_loss(
            input,
            label,
            reduction=self.reduction,
            margin=self.margin,
            name=self.name,
        )
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439


class CosineEmbeddingLoss(Layer):
    r"""
    This interface is used to construct a callable object of the ``CosineEmbeddingLoss`` class.
    The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictions ``input1``, ``input2``
    and target labels ``label`` with values 1 or 0. This is used for measuring whether two inputs are similar or
    dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning.
    The cosine embedding loss can be described as:

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

    Parameters:
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
            default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
            ``'mean'``: the sum of the output will be divided by the number of
            elements in the output, ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        output (Tensor): Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
                         If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
                         If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.21155193]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387, 0.        ]

    """

    def __init__(self, margin=0, reduction='mean', name=None):
        if margin > 1 or margin < -1:
            raise ValueError(
                "The value of 'margin' should be in the interval of [-1, 1], but received %f, which is not allowed."
1440 1441
                % margin
            )
1442 1443 1444
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' should be 'sum', 'mean' or "
1445 1446
                "'none', but received %s, which is not allowed." % reduction
            )
1447
        super().__init__()
1448 1449 1450 1451 1452
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input1, input2, label):
1453 1454 1455 1456 1457 1458 1459 1460
        return F.cosine_embedding_loss(
            input1,
            input2,
            label,
            margin=self.margin,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477


class TripletMarginWithDistanceLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}

    where the default `distance_function`
1478

Y
yangguohao 已提交
1479
    .. math::
1480
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2
1481 1482

    or user can define their own distance function. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
1483 1484 1485 1486 1487
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:
        distance_function (Callable, Optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
1488

Y
yangguohao 已提交
1489 1490 1491 1492
        margin (float, Optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
                between the positive and negative distances required for the loss to be 0. Larger
                margins penalize cases where the negative examples are not distant enough from the
                anchors, relative to the positives.
1493

Y
yangguohao 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
        swap (bool, Optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1505

Y
yangguohao 已提交
1506 1507
    Shapes:
        input (Tensor):Input tensor, the data type is float32 or float64.
1508
    the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
Y
yangguohao 已提交
1509 1510

        positive (Tensor):Positive tensor, the data type is float32 or float64.
1511
    The shape of label is the same as the shape of input.
Y
yangguohao 已提交
1512 1513

        negative (Tensor):Negative tensor, the data type is float32 or float64.
1514
    The shape of label is the same as the shape of input.
1515

1516
        output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
Y
yangguohao 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

    Return:
        A callable object of TripletMarginWithDistanceLoss

    Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import TripletMarginWithDistanceLoss

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='none')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])

            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='mean')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1542 1543 1544 1545 1546 1547 1548 1549
    def __init__(
        self,
        distance_function=None,
        margin=1.0,
        swap=False,
        reduction: str = 'mean',
        name=None,
    ):
1550
        super().__init__()
Y
yangguohao 已提交
1551 1552 1553 1554
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginWithDistanceLoss "
                "should be 'sum', 'mean' or 'none', but "
1555 1556
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1557 1558 1559 1560 1561 1562 1563
        self.margin = margin
        self.swap = swap
        self.reduction = reduction
        self.distance_function = distance_function
        self.name = name

    def forward(self, input, positive, negative):
1564 1565 1566 1567 1568 1569 1570 1571 1572
        return F.triplet_margin_with_distance_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641


class TripletMarginLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, *)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        margin (float, Optional):Default: :math:`1`.

        p (int, Optional):The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional):Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool, Optional):The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``

        name (str,Optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor):Input tensor, the data type is float32 or float64.
        the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

    Returns:
        Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_loss = paddle.nn.TripletMarginLoss(reduction='none')
            loss = triplet_margin_loss(input, positive, negative)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])
1642

Y
yangguohao 已提交
1643 1644 1645 1646 1647 1648 1649
            triplet_margin_loss = paddle.nn.TripletMarginLoss(margin=1.0, swap=True, reduction='mean', )
            loss = triplet_margin_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

1650 1651 1652 1653 1654 1655 1656 1657 1658
    def __init__(
        self,
        margin=1.0,
        p=2.0,
        epsilon=1e-6,
        swap=False,
        reduction='mean',
        name=None,
    ):
1659
        super().__init__()
Y
yangguohao 已提交
1660 1661 1662
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginLoss should be 'sum', 'mean' or 'none', but "
1663 1664
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1665 1666 1667 1668 1669 1670 1671 1672
        self.margin = margin
        self.p = p
        self.epsilon = epsilon
        self.swap = swap
        self.reduction = reduction
        self.name = name

    def forward(self, input, positive, negative):
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        return F.triplet_margin_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            p=self.p,
            epsilon=self.epsilon,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
1684 1685


Y
yangguohao 已提交
1686 1687
class MultiMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between
1688
    input :math:`input` and label :math:`label`:
Y
yangguohao 已提交
1689

1690 1691
    For i-th mini-batch sample, the loss in terms of the 1D input :math:`input_i` and scalar
    output :math:`label_i` is:
Y
yangguohao 已提交
1692

1693 1694
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, \text{margin} - input_i[label_i] + input_i[j])^p}{\text{C}}
Y
yangguohao 已提交
1695

1696
    where :math:`0 \leq j \leq \text{C}-1`, :math:`0 \leq i \leq \text{N}-1` and :math:`j \neq label_i`.
Y
yangguohao 已提交
1697

1698 1699
    Optionally, you can give non-equal weighting on the classes by passing
    a 1D :attr:`weight` tensor into the constructor.
Y
yangguohao 已提交
1700

1701
    The loss function for i-th sample then becomes:
Y
yangguohao 已提交
1702

1703 1704
    .. math::
        \text{loss}(input_i, label_i) = \frac{\sum_{j} \max(0, weight[label_i] * (\text{margin} - input_i[label_i] + input_i[j]))^p}{\text{C}}
Y
yangguohao 已提交
1705 1706


1707
    Parameters:
Y
yangguohao 已提交
1708

1709
        p (int, Optional):The norm degree for pairwise distance. Default: :math:`1`.
Y
yangguohao 已提交
1710

1711
        margin (float, Optional):Default: :math:`1`.
Y
yangguohao 已提交
1712

1713 1714 1715
        weight (Tensor,optional): a manual rescaling weight given to each class.
                If given, has to be a Tensor of shape (C,) and the data type is float32, float64.
                Default is ``'None'`` .
Y
yangguohao 已提交
1716

1717 1718 1719 1720 1721 1722
        reduction (str, optional): Indicate how to calculate the loss by batch_size,
                the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
Y
yangguohao 已提交
1723

1724 1725
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
Y
yangguohao 已提交
1726

1727 1728
    Call parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
Y
yangguohao 已提交
1729

1730
        label (Tensor): Label tensor, 0<= label < input.shape[1], the data type is int32 or int64.
Y
yangguohao 已提交
1731

1732 1733
    Shape:
        input: 2-D Tensor, the shape is [N, C], N is batch size and `C` means number of classes.
Y
yangguohao 已提交
1734

1735
        label: 1-D Tensor, the shape is [N,].
Y
yangguohao 已提交
1736

1737
        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the label.
Y
yangguohao 已提交
1738

1739 1740
    Returns:
        A callable object of MultiMarginLoss.
Y
yangguohao 已提交
1741

1742 1743
    Examples:
        .. code-block:: python
Y
yangguohao 已提交
1744

1745 1746
            import paddle
            import paddle.nn as nn
Y
yangguohao 已提交
1747

1748 1749
            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            label = paddle.to_tensor([0, 1, 2], dtype=paddle.int32)
Y
yangguohao 已提交
1750

1751 1752 1753 1754
            multi_margin_loss = nn.MultiMarginLoss(reduction='mean')
            loss = multi_margin_loss(input, label)
            print(loss)
    """
Y
yangguohao 已提交
1755

1756 1757 1758 1759 1760 1761 1762 1763
    def __init__(
        self,
        p: int = 1,
        margin: float = 1.0,
        weight=None,
        reduction="mean",
        name=None,
    ):
1764
        super().__init__()
Y
yangguohao 已提交
1765 1766 1767
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiMarginLoss' should be 'sum', 'mean' or 'none', "
1768 1769
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1770 1771 1772 1773 1774 1775 1776
        self.p = p
        self.margin = margin
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1777 1778 1779 1780 1781 1782 1783 1784 1785
        return F.multi_margin_loss(
            input,
            label,
            p=self.p,
            margin=self.margin,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1786 1787


1788 1789
class SoftMarginLoss(Layer):
    r"""
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    Creates a criterion that measures a two-class soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
1809 1810 1811 1812 1813 1814 1815 1816
        - Input (Tensor): The input tensor with shape: ``[N, *]``,
          N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf
          Available dtype is float32, float64.
        - Label (Tensor): The target labels tensor with the same shape as
          ``input``. The target labels which values should be numbers -1 or 1.
          Available dtype is int32, int64, float32, float64.
        - Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
          same as ``input`` , else the shape of output is [1].
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    Returns:
        A callable object of SoftMarginLoss.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            soft_margin_loss = paddle.nn.SoftMarginLoss()
            output = soft_margin_loss(input, label)
1830 1831 1832
            print(output)
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.64022040])
1833

1834 1835
            input_np = paddle.uniform(shape=(5, 5), min=0.1, max=0.8, dtype="float64")
            label_np = paddle.randint(high=2, shape=(5, 5), dtype="int64")
1836 1837 1838 1839 1840
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            soft_margin_loss = paddle.nn.SoftMarginLoss(reduction='none')
            output = soft_margin_loss(input, label)
1841 1842 1843 1844 1845 1846 1847
            print(output)
            # Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
            #        [[0.61739663, 0.51405668, 1.09346100, 0.42385561, 0.91602303],
            #         [0.76997038, 1.01977148, 0.98971722, 1.13976032, 0.88152088],
            #         [0.55476735, 1.10505384, 0.89923519, 0.45018155, 1.06587511],
            #         [0.37998142, 0.48067240, 0.47791212, 0.55664053, 0.98581399],
            #         [0.78571653, 0.59319711, 0.39701841, 0.76172109, 0.83781742]])
1848

1849 1850 1851 1852 1853 1854
    """

    def __init__(self, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in SoftMarginLoss should be 'sum', 'mean' or 'none', but "
1855 1856
                "received %s, which is not allowed." % reduction
            )
1857

1858
        super().__init__()
1859 1860 1861 1862
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
1863 1864 1865
        out = paddle.nn.functional.soft_margin_loss(
            input, label, self.reduction, self.name
        )
1866
        return out