loss.py 23.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import paddle

17
# TODO: define loss functions of neural network  
18
import numpy as np
19 20 21 22
import paddle
import paddle.fluid as fluid
from ...fluid.framework import core, in_dygraph_mode
from ...fluid.layers.nn import _elementwise_op_in_dygraph
23 24 25 26 27 28 29 30
from ...fluid.layers import bpr_loss  #DEFINE_ALIAS
from ...fluid.layers import center_loss  #DEFINE_ALIAS
from ...fluid.layers import cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import dice_loss  #DEFINE_ALIAS
from ...fluid.layers import iou_similarity  #DEFINE_ALIAS
from ...fluid.layers import log_loss  #DEFINE_ALIAS
from ...fluid.layers import npair_loss  #DEFINE_ALIAS
from ...fluid.layers import rank_loss  #DEFINE_ALIAS
31
from ...fluid.layers import reshape
32 33 34 35 36 37 38 39
from ...fluid.layers import sigmoid_cross_entropy_with_logits  #DEFINE_ALIAS
from ...fluid.layers import sigmoid_focal_loss  #DEFINE_ALIAS
from ...fluid.layers import smooth_l1  #DEFINE_ALIAS
from ...fluid.layers import softmax_with_cross_entropy  #DEFINE_ALIAS
from ...fluid.layers import square_error_cost  #DEFINE_ALIAS
from ...fluid.layers import ssd_loss  #DEFINE_ALIAS
from ...fluid.layers import teacher_student_sigmoid_loss  #DEFINE_ALIAS

40 41 42
from ...fluid.layers import edit_distance  #DEFINE_ALIAS
from ...fluid.layers import huber_loss  #DEFINE_ALIAS
from ...fluid.layers import sampled_softmax_with_cross_entropy  #DEFINE_ALIAS
43 44
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import Variable
45

46 47 48 49 50
__all__ = [
    'bpr_loss',
    'center_loss',
    'cross_entropy',
    'dice_loss',
51 52
    'edit_distance',
    'huber_loss',
53
    'iou_similarity',
54
    'kl_div',
55
    'l1_loss',
56 57
    'log_loss',
    'mse_loss',
58
    'margin_ranking_loss',
59
    #       'nce',
60
    'nll_loss',
61 62
    'npair_loss',
    'rank_loss',
63
    'sampled_softmax_with_cross_entropy',
64 65 66 67 68 69 70 71
    'sigmoid_cross_entropy_with_logits',
    'sigmoid_focal_loss',
    'smooth_l1',
    'softmax_with_cross_entropy',
    'square_error_cost',
    'ssd_loss',
    'teacher_student_sigmoid_loss'
]
72 73


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
def margin_ranking_loss(input,
                        other,
                        target,
                        margin=0.0,
                        reduction='mean',
                        name=None):
    """

    This op the calcluate the the margin rank loss between the input x, y and target, use the math function as follows. 

    .. math:: 
        margin\_rank\_loss = max(0, -target * (input - other) + margin)

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
        target(Tensor): the target value corresponding to input, it's data type should be float32, float64. 
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Examples:

        .. code-block:: python

            import numpy as np 
            import paddle 
            
            paddle.disable_static()
             
            x = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32'))
            y = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32'))
            target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32'))
            loss = paddle.nn.functional.margin_ranking_loss(x, y, target) 
            print(loss.numpy()) # [0.75]
    """
    if fluid.framework.in_dygraph_mode():
        out = core.ops.elementwise_sub(other, input)
        out = core.ops.elementwise_mul(out, target)
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
            out = core.ops.elementwise_add(out, margin)
        out = core.ops.relu(out)
        if reduction == 'sum':
            return core.ops.reduce_sum(out, 'reduce_all', True)
        elif reduction == 'mean':
            return core.ops.mean(out)
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
        target, 'target', ['float32', 'float64'], 'margin_rank_loss')

    out = paddle.elementwise_sub(other, input)
    out = paddle.multiply(out, target)

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
        paddle.fill_constant([1], out.dtype, margin, out=margin_var)
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out})
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs)
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={})
        return result_out


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
def l1_loss(x, label, reduction='mean', name=None):
    """
    This operator computes the L1 Loss of Tensor ``x`` and ``label`` as follows.

    If :attr:`reduction` set to ``'none'``, the loss is:

    .. math::
        Out = \lvert x - label\rvert

    If :attr:`reduction` set to ``'mean'``, the loss is:

    .. math::
        Out = MEAN(\lvert x - label\rvert)

    If :attr:`reduction` set to ``'sum'``, the loss is:

    .. math::
        Out = SUM(\lvert x - label\rvert)

    
    Parameters:
        x (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``x`` . It's data type should be float32, float64, int32, int64.
        reduction (str, optional): Indicate the reduction to apply to the loss, 
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned; 
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. 
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. 
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the L1 Loss of Tensor ``x`` and ``label``.
            If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``x`` .
            If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar.
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            
            paddle.disable_static()
            x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            x = paddle.to_variable(x_data)
            label = paddle.to_variable(label_data)

            l1_loss = paddle.nn.functional.l1_loss(x, label)
            print(l1_loss.numpy())  
            # [0.35]

            l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='none')
            print(l1_loss.numpy())  
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

            l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='sum')
            print(l1_loss.numpy())  
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

    if in_dygraph_mode():
        unreduced = _elementwise_op_in_dygraph(
            x, label, axis=-1, act='abs', op_name='elementwise_sub')
        if reduction == 'mean':
            return core.ops.mean(unreduced)
        elif reduction == 'sum':
            return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                       'reduce_all', True)
        else:
            return unreduced

    fluid.data_feeder.check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

    if reduction == 'sum':
        unreduced = paddle.elementwise_sub(x, label, act='abs')
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
        unreduced = paddle.elementwise_sub(x, label, act='abs')
        return paddle.mean(unreduced, name=name)
    else:
        return paddle.elementwise_sub(x, label, act='abs', name=name)
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
                import paddle
                import numpy as np
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

                input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ],
                                     [0.53331435, 0.07999352, 0.8549948 ],
                                     [0.25879037, 0.39530203, 0.698465  ],
                                     [0.73427284, 0.63575995, 0.18827209],
                                     [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32)
                label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64)

                place = paddle.CPUPlace()
                paddle.disable_static(place)
                input = paddle.to_variable(input_np)
                log_out = log_softmax(input)
                label = paddle.to_variable(label_np)
                result = nll_loss(log_out, label)
                print(result.numpy()) # [1.0720209]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            input_dims))
    n = input_shape[0]
    c = input_shape[1]
    if in_dygraph_mode():
        if input_dims != 2 and input_dims != 4:
            input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1])
            label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1])
            out_shape = [n] + input_shape[2:]
        out, total_weight = core.ops.nll_loss(input, label, weight,
                                              'ignore_index', ignore_index,
                                              'reduction', reduction)
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
            out, _ = core.ops.reshape2(out, 'shape', out_shape)
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'nll_loss')
    fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                               'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
374 375


376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
def kl_div(input, label, reduction='mean', name=None):
    """
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
    the same shape as input, loss in each point is calculated 
    seperately and no reduction is applied.
    
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
    
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
    
    While :attr:`reduction` is :attr:`batchmean`, output loss is 
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means 
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
        name(str, optional): Name for the operation (optional, default is None). For more information, 
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
            
            paddle.enable_imperative()
            
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

            # 'batchmean' reduction, loss shape will be [N]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='batchmean')
            # shape=[5]
            
            # 'mean' reduction, loss shape will be [1]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='mean')
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='sum')
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
            pred_loss = F.kl_div(paddle.to_variable(input),
                                 paddle.to_variable(target), reduction='none')
            # shape=[5, 20]

    """
    if paddle.in_dynamic_mode():
        out = core.ops.kldiv_loss(input, label, 'reduction', reduction)
        return out

    helper = LayerHelper('kl_div', **locals())

    fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input,
                'Target': label},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def mse_loss(input, label, reduction='mean', name=None):
    """
    This op accepts input predications and label and returns the mean square error.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        Tensor: The tensor tensor storing the mean square error difference of input and label.

    Return type: Tensor.
    
    Examples:

        .. code-block:: python
            import numpy as np
            import paddle


            # static graph mode
            paddle.enable_static()
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.data(name="input", shape=[1])
            label = paddle.data(name="label", shape=[1])
            place = paddle.CPUPlace()
            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

            output = mse_loss(input,label)
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            output_data = exe.run(
                paddle.static.default_main_program(),
                feed={"input":input_data, "label":label_data},
                fetch_list=[output],
                return_numpy=True)
            print(output_data)
            # [array([0.04000002], dtype=float32)]

            # dynamic graph mode
            paddle.disable_static()
            input = paddle.to_variable(input_data)
            label = paddle.to_variable(label_data)
            output = mse_loss(input, label)
            print(output.numpy())
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

    if not paddle.fluid.framework.in_dygraph_mode():
        paddle.fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss')
        paddle.fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss')

    if reduction == 'none':
        return paddle.fluid.layers.square(
            paddle.fluid.layers.elementwise_sub(input, label), name=name)
    elif reduction == 'mean':
        return paddle.mean(
            paddle.fluid.layers.square(
                paddle.fluid.layers.elementwise_sub(input, label)),
            name=name)
    else:
        return paddle.sum(paddle.fluid.layers.square(
            paddle.fluid.layers.elementwise_sub(input, label)),
                          name=name)