# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle # TODO: define loss functions of neural network import numpy as np import paddle import paddle.fluid as fluid from ...fluid.framework import core, in_dygraph_mode from ...fluid.layers.nn import _elementwise_op_in_dygraph from ...fluid.layers import bpr_loss #DEFINE_ALIAS from ...fluid.layers import center_loss #DEFINE_ALIAS from ...fluid.layers import cross_entropy #DEFINE_ALIAS from ...fluid.layers import dice_loss #DEFINE_ALIAS from ...fluid.layers import iou_similarity #DEFINE_ALIAS from ...fluid.layers import log_loss #DEFINE_ALIAS from ...fluid.layers import npair_loss #DEFINE_ALIAS from ...fluid.layers import rank_loss #DEFINE_ALIAS from ...fluid.layers import reshape from ...fluid.layers import sigmoid_cross_entropy_with_logits #DEFINE_ALIAS from ...fluid.layers import sigmoid_focal_loss #DEFINE_ALIAS from ...fluid.layers import smooth_l1 #DEFINE_ALIAS from ...fluid.layers import softmax_with_cross_entropy #DEFINE_ALIAS from ...fluid.layers import square_error_cost #DEFINE_ALIAS from ...fluid.layers import ssd_loss #DEFINE_ALIAS from ...fluid.layers import teacher_student_sigmoid_loss #DEFINE_ALIAS from ...fluid.layers import edit_distance #DEFINE_ALIAS from ...fluid.layers import huber_loss #DEFINE_ALIAS from ...fluid.layers import sampled_softmax_with_cross_entropy #DEFINE_ALIAS from ...fluid.layer_helper import LayerHelper from ...fluid.framework import Variable __all__ = [ 'bpr_loss', 'center_loss', 'cross_entropy', 'dice_loss', 'edit_distance', 'huber_loss', 'iou_similarity', 'kl_div', 'l1_loss', 'log_loss', 'mse_loss', 'margin_ranking_loss', # 'nce', 'nll_loss', 'npair_loss', 'rank_loss', 'sampled_softmax_with_cross_entropy', 'sigmoid_cross_entropy_with_logits', 'sigmoid_focal_loss', 'smooth_l1', 'softmax_with_cross_entropy', 'square_error_cost', 'ssd_loss', 'teacher_student_sigmoid_loss' ] def margin_ranking_loss(input, other, target, margin=0.0, reduction='mean', name=None): """ This op the calcluate the the margin rank loss between the input x, y and target, use the math function as follows. .. math:: margin\_rank\_loss = max(0, -target * (input - other) + margin) If :attr:`reduction` set to ``'mean'``, the reduced mean loss is: .. math:: Out = MEAN(margin\_rank\_loss) If :attr:`reduction` set to ``'sum'``, the reduced sum loss is: .. math:: Out = SUM(margin\_rank\_loss) If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``. Parameters: input(Tensor): the first input tensor, it's data type should be float32, float64. other(Tensor): the second input tensor, it's data type should be float32, float64. target(Tensor): the target value corresponding to input, it's data type should be float32, float64. margin (float, optional): The margin value to add, default value is 0; reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor. Examples: .. code-block:: python import numpy as np import paddle paddle.disable_static() x = paddle.to_variable(np.array([[1, 2], [3, 4]]).astype('float32')) y = paddle.to_variable(np.array([[2, 1], [2, 4]]).astype('float32')) target = paddle.to_variable(np.array([[1, -1], [-1, -1]]).astype('float32')) loss = paddle.nn.functional.margin_ranking_loss(x, y, target) print(loss.numpy()) # [0.75] """ if fluid.framework.in_dygraph_mode(): out = core.ops.elementwise_sub(other, input) out = core.ops.elementwise_mul(out, target) if margin != 0.0: margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype) out = core.ops.elementwise_add(out, margin) out = core.ops.relu(out) if reduction == 'sum': return core.ops.reduce_sum(out, 'reduce_all', True) elif reduction == 'mean': return core.ops.mean(out) return out helper = LayerHelper("margin_ranking_loss", **locals()) fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'margin_rank_loss') fluid.data_feeder.check_variable_and_dtype( other, 'other', ['float32', 'float64'], 'margin_rank_loss') fluid.data_feeder.check_variable_and_dtype( target, 'target', ['float32', 'float64'], 'margin_rank_loss') out = paddle.elementwise_sub(other, input) out = paddle.multiply(out, target) if margin != 0.0: margin_var = out.block.create_var(dtype=out.dtype) paddle.fill_constant([1], out.dtype, margin, out=margin_var) out = paddle.add(out, margin_var) result_out = helper.create_variable_for_type_inference(input.dtype) if reduction == 'none': helper.append_op( type="relu", inputs={"X": out}, outputs={"Out": result_out}) return result_out elif reduction == 'sum': out = paddle.nn.functional.relu(out) attrs = {"dim": [0], "keep_dim": False, "reduce_all": True} helper.append_op( type="reduce_sum", inputs={"X": out}, outputs={"Out": result_out}, attrs=attrs) return result_out elif reduction == 'mean': out = paddle.nn.functional.relu(out) helper.append_op( type="mean", inputs={"X": out}, outputs={"Out": result_out}, attrs={}) return result_out def l1_loss(x, label, reduction='mean', name=None): """ This operator computes the L1 Loss of Tensor ``x`` and ``label`` as follows. If :attr:`reduction` set to ``'none'``, the loss is: .. math:: Out = \lvert x - label\rvert If :attr:`reduction` set to ``'mean'``, the loss is: .. math:: Out = MEAN(\lvert x - label\rvert) If :attr:`reduction` set to ``'sum'``, the loss is: .. math:: Out = SUM(\lvert x - label\rvert) Parameters: x (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64. label (Tensor): label. The shapes is [N, *], same shape as ``x`` . It's data type should be float32, float64, int32, int64. reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the L1 Loss of Tensor ``x`` and ``label``. If :attr:`reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``x`` . If :attr:`reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1], which means the output is a scalar. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() x_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32") label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32") x = paddle.to_variable(x_data) label = paddle.to_variable(label_data) l1_loss = paddle.nn.functional.l1_loss(x, label) print(l1_loss.numpy()) # [0.35] l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='none') print(l1_loss.numpy()) # [[0.20000005 0.19999999] # [0.2 0.79999995]] l1_loss = paddle.nn.functional.l1_loss(x, label, reduction='sum') print(l1_loss.numpy()) # [1.4] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but " "received %s, which is not allowed." % reduction) if in_dygraph_mode(): unreduced = _elementwise_op_in_dygraph( x, label, axis=-1, act='abs', op_name='elementwise_sub') if reduction == 'mean': return core.ops.mean(unreduced) elif reduction == 'sum': return core.ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False, 'reduce_all', True) else: return unreduced fluid.data_feeder.check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64'], 'l1_loss') fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss') if reduction == 'sum': unreduced = paddle.elementwise_sub(x, label, act='abs') return paddle.sum(unreduced, name=name) elif reduction == 'mean': unreduced = paddle.elementwise_sub(x, label, act='abs') return paddle.mean(unreduced, name=name) else: return paddle.elementwise_sub(x, label, act='abs', name=name) def nll_loss(input, label, weight=None, ignore_index=-100, reduction='mean', name=None): """ This api returns negative log likelihood. See more detail in :ref:`api_nn_loss_NLLLoss` . Parameters: input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes. But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`. The data type is float32, float64. label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`. The data type is int64. weight (Tensor, optional): Weight tensor, a manual rescaling weight given to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise, it treated as if having all ones. the data type is float32, float64, Default is ``'None'``. ignore_index (int64, optional): Specifies a target value that is ignored and does not contribute to the input gradient. reduction (str, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'mean'``, the reduced mean loss is returned; if `reduction` is ``'sum'``, the reduced sum loss is returned; if `reduction` is ``'none'``, no reduction will be apllied. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: `Tensor`, the value of negative log likelihood loss. Examples: .. code-block:: python import paddle import numpy as np from paddle.nn.functional import nll_loss log_softmax = paddle.nn.LogSoftmax(axis=1) input_np = np.array([[0.88103855, 0.9908683 , 0.6226845 ], [0.53331435, 0.07999352, 0.8549948 ], [0.25879037, 0.39530203, 0.698465 ], [0.73427284, 0.63575995, 0.18827209], [0.05689114, 0.0862954 , 0.6325046 ]]).astype(np.float32) label_np = np.array([0, 2, 1, 1, 0]).astype(np.int64) place = paddle.CPUPlace() paddle.disable_static(place) input = paddle.to_variable(input_np) log_out = log_softmax(input) label = paddle.to_variable(label_np) result = nll_loss(log_out, label) print(result.numpy()) # [1.0720209] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "The value of 'reduction' in nll_loss should be 'sum', 'mean' or " "'none', but received %s, which is not allowed." % reduction) input_shape = list(input.shape) input_dims = len(input_shape) if input_dims < 2: raise ValueError('Expected 2 or more dimensions (got {})'.format( input_dims)) n = input_shape[0] c = input_shape[1] if in_dygraph_mode(): if input_dims != 2 and input_dims != 4: input, _ = core.ops.reshape2(input, 'shape', [n, c, 1, -1]) label, _ = core.ops.reshape2(label, 'shape', [n, 1, -1]) out_shape = [n] + input_shape[2:] out, total_weight = core.ops.nll_loss(input, label, weight, 'ignore_index', ignore_index, 'reduction', reduction) if input_dims != 2 and input_dims != 4 and reduction == 'none': out, _ = core.ops.reshape2(out, 'shape', out_shape) return out helper = LayerHelper('nll_loss', **locals()) if input_dims != 2 and input_dims != 4: input = reshape(input, shape=[n, c, 1, -1]) label = reshape(label, shape=[n, 1, -1]) out_shape = [n] + input_shape[2:] fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'nll_loss') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'], 'nll_loss') inputs = {'X': input, 'Label': label} attrs = {'reduction': reduction, 'ignore_index': ignore_index} if weight is not None: if isinstance(weight, Variable): inputs['Weight'] = weight out = helper.create_variable_for_type_inference(dtype=input.dtype) total_weight = helper.create_variable_for_type_inference(dtype=input.dtype) outputs = {'Out': out, 'Total_weight': total_weight} helper.append_op( type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs) if input_dims != 2 and input_dims != 4 and reduction == 'none': out = reshape(out, shape=out_shape) return out def kl_div(input, label, reduction='mean', name=None): """ This operator calculates the Kullback-Leibler divergence loss between Input(X) and Input(Target). Notes that Input(X) is the log-probability and Input(Target) is the probability. KL divergence loss is calculated as follows: $$l(x, y) = y * (\log(y) - x)$$ While :math:`x` is input and :math:`y` is label. While :attr:`reduction` is :attr:`none`, output loss is in the same shape as input, loss in each point is calculated seperately and no reduction is applied. While :attr:`reduction` is :attr:`mean`, output loss is in shape of [1] and loss value is the mean value of all losses. While :attr:`reduction` is :attr:`sum`, output loss is in shape of [1] and loss value is the sum value of all losses. While :attr:`reduction` is :attr:`batchmean`, output loss is in shape of [1] and loss value is the sum value of all losses divided by batch size. Args: input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64. label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64. reduction (Tensor): Indicate how to average the loss, the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``. If `reduction` is ``'mean'``, the reduced mean loss is returned; If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned; if `reduction` is ``'sum'``, the reduced sum loss is returned; if `reduction` is ``'none'``, no reduction will be apllied. Default is ``'mean'``. name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The KL divergence loss. The data type is same as input tensor Examples: .. code-block:: python import paddle import numpy as np import paddle.nn.functional as F paddle.enable_imperative() shape = (5, 20) input = np.random.uniform(-10, 10, shape).astype('float32') target = np.random.uniform(-10, 10, shape).astype('float32') # 'batchmean' reduction, loss shape will be [N] pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='batchmean') # shape=[5] # 'mean' reduction, loss shape will be [1] pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='mean') # shape=[1] # 'sum' reduction, loss shape will be [1] pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='sum') # shape=[1] # 'none' reduction, loss shape is same with input shape pred_loss = F.kl_div(paddle.to_variable(input), paddle.to_variable(target), reduction='none') # shape=[5, 20] """ if paddle.in_dynamic_mode(): out = core.ops.kldiv_loss(input, label, 'reduction', reduction) return out helper = LayerHelper('kl_div', **locals()) fluid.data_feeder.check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'kl_div') fluid.data_feeder.check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'kl_div') fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div') loss = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='kldiv_loss', inputs={'X': input, 'Target': label}, outputs={'Loss': loss}, attrs={'reduction': reduction}) return loss def mse_loss(input, label, reduction='mean', name=None): """ This op accepts input predications and label and returns the mean square error. If :attr:`reduction` is set to ``'none'``, loss is calculated as: .. math:: Out = (input - label)^2 If :attr:`reduction` is set to ``'mean'``, loss is calculated as: .. math:: Out = \operatorname{mean}((input - label)^2) If :attr:`reduction` is set to ``'sum'``, loss is calculated as: .. math:: Out = \operatorname{sum}((input - label)^2) Parameters: input (Tensor): Input tensor, the data type should be float32 or float64. label (Tensor): Label tensor, the data type should be float32 or float64. reduction (string, optional): The reduction method for the output, could be 'none' | 'mean' | 'sum'. If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. If :attr:`reduction` is ``'none'``, the unreduced loss is returned. Default is ``'mean'``. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The tensor tensor storing the mean square error difference of input and label. Return type: Tensor. Examples: .. code-block:: python import numpy as np import paddle # static graph mode paddle.enable_static() mse_loss = paddle.nn.loss.MSELoss() input = paddle.data(name="input", shape=[1]) label = paddle.data(name="label", shape=[1]) place = paddle.CPUPlace() input_data = np.array([1.5]).astype("float32") label_data = np.array([1.7]).astype("float32") output = mse_loss(input,label) exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) output_data = exe.run( paddle.static.default_main_program(), feed={"input":input_data, "label":label_data}, fetch_list=[output], return_numpy=True) print(output_data) # [array([0.04000002], dtype=float32)] # dynamic graph mode paddle.disable_static() input = paddle.to_variable(input_data) label = paddle.to_variable(label_data) output = mse_loss(input, label) print(output.numpy()) # [0.04000002] """ if reduction not in ['sum', 'mean', 'none']: raise ValueError( "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', " "but received {}.".format(reduction)) if not paddle.fluid.framework.in_dygraph_mode(): paddle.fluid.data_feeder.check_variable_and_dtype( input, 'input', ['float32', 'float64'], 'mse_loss') paddle.fluid.data_feeder.check_variable_and_dtype( label, 'label', ['float32', 'float64'], 'mse_loss') if reduction == 'none': return paddle.fluid.layers.square( paddle.fluid.layers.elementwise_sub(input, label), name=name) elif reduction == 'mean': return paddle.mean( paddle.fluid.layers.square( paddle.fluid.layers.elementwise_sub(input, label)), name=name) else: return paddle.sum(paddle.fluid.layers.square( paddle.fluid.layers.elementwise_sub(input, label)), name=name)