test_fill_constant_op.py 15.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16

17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid import Program, program_guard
24
from paddle.fluid.op import Operator
T
tangwei12 已提交
25

26

27 28 29 30 31
def fill_wrapper(shape, value=0.0):
    out = paddle.full(shape=shape, fill_value=value)
    return out


L
liym27 已提交
32
# Situation 1: Attr(shape) is a list(without tensor)
33 34
# Base case
class TestFillConstantOp(OpTest):
35
    def setUp(self):
36
        '''Test fill_constant op with default value'''
37
        self.op_type = "fill_constant"
38
        self.python_api = fill_wrapper
39 40 41
        self.init_dtype()
        self.init_shape()
        self.init_value()
42 43

        self.inputs = {}
44 45
        self.attrs = {'shape': self.shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}
46 47 48 49

    def test_check_output(self):
        self.check_output()

50 51
    def init_dtype(self):
        self.dtype = np.float64
52

53 54
    def init_shape(self):
        self.shape = [123, 92]
55

56 57
    def init_value(self):
        self.value = 0.0
58 59


60 61
class TestFillConstantFP32Op(TestFillConstantOp):
    '''Test fill_constant op with specified value'''
62

63 64
    def init_dtype(self):
        self.dtype = np.float32
65

66 67
    def init_value(self):
        self.value = 3.8
68 69


70 71
class TestFillConstantFP16Op(TestFillConstantOp):
    '''Test fill_constant op with specified value'''
72

73 74
    def init_dtype(self):
        self.dtype = np.float16
75

76 77
    def init_value(self):
        self.value = 3.8
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

class TestFillConstantINT64Op(TestFillConstantOp):
    '''Test fill_constant op with specified int64 value'''

    def init_dtype(self):
        self.dtype = np.int64

    def init_value(self):
        self.value = 10000000000


class TestFillConstantINT32Op(TestFillConstantOp):
    '''Test fill_constant op with specified int value'''

    def init_dtype(self):
        self.dtype = np.int32

    def init_value(self):
        self.value = 3
98 99


100 101 102
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
103 104
class TestFillConstantBF16Op(OpTest):
    def setUp(self):
105
        '''Test fill_constant op with specified value'''
106
        self.op_type = "fill_constant"
107
        self.python_api = fill_wrapper
108 109 110 111 112
        self.dtype = np.uint16
        self.inputs = {}
        self.attrs = {
            'shape': [123, 92],
            'value': 3.8,
113
            'dtype': core.VarDesc.VarType.BF16,
114 115 116 117 118 119 120 121
        }
        self.outputs = {'Out': convert_float_to_uint16(np.full((123, 92), 3.8))}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)


122
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
T
tangwei12 已提交
123 124 125 126 127 128
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
129 130 131
        fill_constant_op = Operator(
            "fill_constant", shape=[123, 92], value=3.8, Out='Out'
        )
T
tangwei12 已提交
132 133 134
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
135 136 137
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

138
        np.testing.assert_array_equal(result_array, full_array)
T
tangwei12 已提交
139 140 141

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
142 143 144
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
145 146 147 148
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
149 150 151
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
    def setUp(self):
152
        '''Test fill_constant op with specified value'''
L
liym27 已提交
153
        self.op_type = "fill_constant"
154
        self.python_api = fill_wrapper
L
liym27 已提交
155 156 157
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
158 159 160
            shape_tensor_list.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
liym27 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
    def setUp(self):
177
        '''Test fill_constant op with default value'''
L
liym27 已提交
178
        self.op_type = "fill_constant"
179
        self.python_api = fill_wrapper
L
liym27 已提交
180 181 182
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
183 184 185
            shape_tensor_list.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
liym27 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
    def setUp(self):
216
        '''Test fill_constant op with specified value'''
L
liym27 已提交
217
        self.op_type = "fill_constant"
218
        self.python_api = fill_wrapper
L
liym27 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
233 234 235
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
    def setUp(self):
236
        '''Test fill_constant op with specified value'''
W
wangchaochaohu 已提交
237
        self.op_type = "fill_constant"
238
        self.python_api = fill_wrapper
W
wangchaochaohu 已提交
239 240 241 242
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
243
            'ValueTensor': np.array([self.value]).astype("float32"),
W
wangchaochaohu 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        }
        self.attrs = {'value': self.value + 1.0}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output()


# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
    def setUp(self):
260
        '''Test fill_constant op with specified value'''
W
wangchaochaohu 已提交
261
        self.op_type = "fill_constant"
262
        self.python_api = fill_wrapper
W
wangchaochaohu 已提交
263 264 265 266
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
267
            'ValueTensor': np.array([self.value]).astype("int32"),
W
wangchaochaohu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280
        }
        self.attrs = {'value': self.value, 'dtype': 2}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3
        self.dtype = np.int32

    def test_check_output(self):
        self.check_output()


281
# Test python API
282
class TestFillConstantAPI(unittest.TestCase):
L
liym27 已提交
283
    def test_api(self):
284

285
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
286
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32"
        )
        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64"
        )

        out_1 = fluid.layers.fill_constant(
            shape=[1, 2], dtype="float32", value=1.1
        )

        out_2 = fluid.layers.fill_constant(
            shape=[1, positive_2_int32], dtype="float32", value=1.1
        )

        out_3 = fluid.layers.fill_constant(
            shape=[1, positive_2_int64], dtype="float32", value=1.1
        )

        out_4 = fluid.layers.fill_constant(
            shape=shape_tensor_int32, dtype="float32", value=1.1
        )

        out_5 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype="float32", value=1.1
        )

        out_6 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=1.1
        )

        val1 = fluid.layers.fill_constant(
            shape=[1], dtype=np.float32, value=1.1
        )
        val2 = fluid.layers.fill_constant(
            shape=[1], dtype=np.float64, value=1.1
        )
        out_7 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=val1
        )

        out_8 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=val2
        )
W
wangchaochaohu 已提交
332

L
liym27 已提交
333
        exe = fluid.Executor(place=fluid.CPUPlace())
334
        res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
L
liym27 已提交
335
            fluid.default_main_program(),
336 337 338 339
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
340 341
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8],
        )
L
liym27 已提交
342 343 344 345

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
346 347
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
348
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
349
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
350 351 352 353 354 355 356 357
        assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))


class TestFillConstantImperative(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            data1 = np.array([1, 2]).astype('int32')
            data2 = np.array([1.1]).astype('float32')
358
            data3 = np.array([88]).astype('int32')
359 360
            shape = fluid.dygraph.to_variable(data1)
            val = fluid.dygraph.to_variable(data2)
361
            value = fluid.dygraph.to_variable(data3)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
            res1 = fluid.layers.fill_constant(
                shape=[1, 2], dtype='float32', value=1.1
            )
            res2 = fluid.layers.fill_constant(
                shape=shape, dtype='float32', value=1.1
            )
            res3 = fluid.layers.fill_constant(
                shape=shape, dtype='float32', value=val
            )
            res4 = fluid.layers.fill_constant(
                shape=shape, dtype='int32', value=value
            )
            assert np.array_equal(
                res1.numpy(), np.full([1, 2], 1.1, dtype="float32")
            )
            assert np.array_equal(
                res2.numpy(), np.full([1, 2], 1.1, dtype="float32")
            )
            assert np.array_equal(
                res3.numpy(), np.full([1, 2], 1.1, dtype="float32")
            )
            assert np.array_equal(
                res4.numpy(), np.full([1, 2], 88, dtype="int32")
            )
L
liym27 已提交
386

387 388 389 390 391 392 393 394 395 396
    def test_nan(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.nan)
            self.assertTrue(np.isnan(res.numpy().item(0)))

    def test_inf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.inf)
            self.assertTrue(np.isinf(res.numpy().item(0)))

L
Leo Chen 已提交
397 398 399 400 401 402
    def test_ninf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.NINF)
            self.assertTrue(np.isinf(res.numpy().item(0)))
            self.assertEqual(np.NINF, res.numpy().item(0))

L
liym27 已提交
403

404
class TestFillConstantOpError(unittest.TestCase):
405 406
    def test_errors(self):
        with program_guard(Program(), Program()):
407
            # for ci coverage
G
GGBond8488 已提交
408
            x1 = paddle.static.data(name='x1', shape=[-1, 1], dtype="int16")
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint4',
            )

            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1.1],
                value=5,
                dtype='float32',
                out=x1,
            )
425

426
            # The argument dtype of fill_constant_op must be one of bool, float16,
427
            # float32, float64, uint8, int16, int32 or int64
G
GGBond8488 已提交
428
            x2 = paddle.static.data(name='x2', shape=[-1, 1], dtype="int32")
L
liym27 已提交
429

430 431 432 433 434 435 436 437
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='float64',
                out=x2,
            )
438

439
            x3 = np.random.randn(100, 100).astype('int32')
440 441 442 443 444 445 446 447
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[100, 100],
                value=5,
                dtype='float64',
                out=x3,
            )
448

449
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
450 451 452 453 454
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

455 456
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
457 458 459 460 461 462
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32"
                )
                fluid.layers.fill_constant(
                    shape=shape, dtype="float32", value=1
                )
463 464 465 466

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
467 468 469 470 471 472
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool"
                )
                fluid.layers.fill_constant(
                    shape=[shape, 2], dtype="float32", value=1
                )
473 474 475

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

476

477 478
class TestFillConstantOp_ValueTensorBf16(OpTest):
    def setUp(self):
479
        '''Test fill_constant op with specified value'''
480
        self.op_type = "fill_constant"
481
        self.python_api = fill_wrapper
482 483 484
        self.init_data()

        self.inputs = {
485 486 487 488
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': convert_float_to_uint16(
                np.array([self.value]).astype("float32")
            ),
489 490 491 492 493 494 495 496 497 498 499
        }
        self.attrs = {'value': self.value, 'dtype': core.VarDesc.VarType.BF16}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.0
        self.dtype = np.uint16
        self.mkldnn_data_type = "bfloat16"

    def test_check_output(self):
500 501
        # no dynamic graph test for mkldnn
        self.check_output_with_place(core.CPUPlace(), check_dygraph=False)
502 503


504
if __name__ == "__main__":
505
    paddle.enable_static()
506
    unittest.main()