test_fill_constant_op.py 15.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import unittest
import numpy as np
17
from op_test import OpTest, convert_float_to_uint16
18

19
import paddle
T
tangwei12 已提交
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
22
import paddle.fluid as fluid
23
import numpy as np
24
from paddle.fluid import Program, program_guard
T
tangwei12 已提交
25

26

L
liym27 已提交
27
# Situation 1: Attr(shape) is a list(without tensor)
28 29
class TestFillConstantOp1(OpTest):
    def setUp(self):
30
        '''Test fill_constant op with specified value'''
31 32 33 34 35 36 37 38 39 40 41 42
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
    def setUp(self):
43
        '''Test fill_constant op with default value'''
44 45 46 47 48 49 50 51 52 53
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


54 55
class TestFillConstantOp3(OpTest):
    def setUp(self):
56
        '''Test fill_constant op with specified int64 value'''
57 58 59 60 61 62 63 64 65 66 67 68
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
    def setUp(self):
69
        '''Test fill_constant op with specified int value'''
70 71 72 73 74 75 76 77 78 79
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


80 81 82
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
83 84
class TestFillConstantBF16Op(OpTest):
    def setUp(self):
85
        '''Test fill_constant op with specified value'''
86 87 88 89 90 91
        self.op_type = "fill_constant"
        self.dtype = np.uint16
        self.inputs = {}
        self.attrs = {
            'shape': [123, 92],
            'value': 3.8,
92
            'dtype': core.VarDesc.VarType.BF16,
93 94 95 96 97 98 99 100
        }
        self.outputs = {'Out': convert_float_to_uint16(np.full((123, 92), 3.8))}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)


101
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
T
tangwei12 已提交
102 103 104 105 106 107
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
108 109 110
        fill_constant_op = Operator(
            "fill_constant", shape=[123, 92], value=3.8, Out='Out'
        )
T
tangwei12 已提交
111 112 113
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
114 115 116
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

117
        np.testing.assert_array_equal(result_array, full_array)
T
tangwei12 已提交
118 119 120

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
121 122 123
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
124 125 126 127
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
128 129 130
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
    def setUp(self):
131
        '''Test fill_constant op with specified value'''
L
liym27 已提交
132 133 134 135
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
136 137 138
            shape_tensor_list.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
liym27 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
    def setUp(self):
155
        '''Test fill_constant op with default value'''
L
liym27 已提交
156 157 158 159
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
160 161 162
            shape_tensor_list.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
L
liym27 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
    def setUp(self):
193
        '''Test fill_constant op with specified value'''
L
liym27 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
209 210 211
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
    def setUp(self):
212
        '''Test fill_constant op with specified value'''
W
wangchaochaohu 已提交
213 214 215 216 217
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
218
            'ValueTensor': np.array([self.value]).astype("float32"),
W
wangchaochaohu 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        }
        self.attrs = {'value': self.value + 1.0}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output()


# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
    def setUp(self):
235
        '''Test fill_constant op with specified value'''
W
wangchaochaohu 已提交
236 237 238 239 240
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
241
            'ValueTensor': np.array([self.value]).astype("int32"),
W
wangchaochaohu 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254
        }
        self.attrs = {'value': self.value, 'dtype': 2}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3
        self.dtype = np.int32

    def test_check_output(self):
        self.check_output()


255
# Test python API
256
class TestFillConstantAPI(unittest.TestCase):
L
liym27 已提交
257
    def test_api(self):
258

259
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
260
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32"
        )
        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64"
        )

        out_1 = fluid.layers.fill_constant(
            shape=[1, 2], dtype="float32", value=1.1
        )

        out_2 = fluid.layers.fill_constant(
            shape=[1, positive_2_int32], dtype="float32", value=1.1
        )

        out_3 = fluid.layers.fill_constant(
            shape=[1, positive_2_int64], dtype="float32", value=1.1
        )

        out_4 = fluid.layers.fill_constant(
            shape=shape_tensor_int32, dtype="float32", value=1.1
        )

        out_5 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype="float32", value=1.1
        )

        out_6 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=1.1
        )

        val1 = fluid.layers.fill_constant(
            shape=[1], dtype=np.float32, value=1.1
        )
        val2 = fluid.layers.fill_constant(
            shape=[1], dtype=np.float64, value=1.1
        )
        out_7 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=val1
        )

        out_8 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=val2
        )
W
wangchaochaohu 已提交
306

L
liym27 已提交
307
        exe = fluid.Executor(place=fluid.CPUPlace())
308
        res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
L
liym27 已提交
309
            fluid.default_main_program(),
310 311 312 313
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
314 315
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8],
        )
L
liym27 已提交
316 317 318 319

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
320 321
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
322
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
323
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
324 325 326 327 328 329 330 331
        assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))


class TestFillConstantImperative(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            data1 = np.array([1, 2]).astype('int32')
            data2 = np.array([1.1]).astype('float32')
332
            data3 = np.array([88]).astype('int32')
333 334
            shape = fluid.dygraph.to_variable(data1)
            val = fluid.dygraph.to_variable(data2)
335
            value = fluid.dygraph.to_variable(data3)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
            res1 = fluid.layers.fill_constant(
                shape=[1, 2], dtype='float32', value=1.1
            )
            res2 = fluid.layers.fill_constant(
                shape=shape, dtype='float32', value=1.1
            )
            res3 = fluid.layers.fill_constant(
                shape=shape, dtype='float32', value=val
            )
            res4 = fluid.layers.fill_constant(
                shape=shape, dtype='int32', value=value
            )
            assert np.array_equal(
                res1.numpy(), np.full([1, 2], 1.1, dtype="float32")
            )
            assert np.array_equal(
                res2.numpy(), np.full([1, 2], 1.1, dtype="float32")
            )
            assert np.array_equal(
                res3.numpy(), np.full([1, 2], 1.1, dtype="float32")
            )
            assert np.array_equal(
                res4.numpy(), np.full([1, 2], 88, dtype="int32")
            )
L
liym27 已提交
360

361 362 363 364 365 366 367 368 369 370
    def test_nan(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.nan)
            self.assertTrue(np.isnan(res.numpy().item(0)))

    def test_inf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.inf)
            self.assertTrue(np.isinf(res.numpy().item(0)))

L
Leo Chen 已提交
371 372 373 374 375 376
    def test_ninf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.NINF)
            self.assertTrue(np.isinf(res.numpy().item(0)))
            self.assertEqual(np.NINF, res.numpy().item(0))

L
liym27 已提交
377

378
class TestFillConstantOpError(unittest.TestCase):
379 380
    def test_errors(self):
        with program_guard(Program(), Program()):
381
            # for ci coverage
382
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint4',
            )

            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1.1],
                value=5,
                dtype='float32',
                out=x1,
            )
399

400
            # The argument dtype of fill_constant_op must be one of bool, float16,
401
            # float32, float64, uint8, int16, int32 or int64
402
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
403

404 405 406 407 408 409 410 411
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='float64',
                out=x2,
            )
412

413
            x3 = np.random.randn(100, 100).astype('int32')
414 415 416 417 418 419 420 421
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[100, 100],
                value=5,
                dtype='float64',
                out=x3,
            )
422

423
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
424 425 426 427 428
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

429 430
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
431 432 433 434 435 436
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32"
                )
                fluid.layers.fill_constant(
                    shape=shape, dtype="float32", value=1
                )
437 438 439 440

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
441 442 443 444 445 446
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool"
                )
                fluid.layers.fill_constant(
                    shape=[shape, 2], dtype="float32", value=1
                )
447 448 449

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

450

451 452
class TestFillConstantOp_ValueTensorBf16(OpTest):
    def setUp(self):
453
        '''Test fill_constant op with specified value'''
454 455 456 457
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
458 459 460 461
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': convert_float_to_uint16(
                np.array([self.value]).astype("float32")
            ),
462 463 464 465 466 467 468 469 470 471 472 473 474 475
        }
        self.attrs = {'value': self.value, 'dtype': core.VarDesc.VarType.BF16}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.0
        self.dtype = np.uint16
        self.mkldnn_data_type = "bfloat16"

    def test_check_output(self):
        self.check_output_with_place(core.CPUPlace())


476
if __name__ == "__main__":
477
    paddle.enable_static()
478
    unittest.main()