test_fill_constant_op.py 17.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20

21
import paddle
T
tangwei12 已提交
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24
import paddle.fluid as fluid
25
import numpy as np
26
from paddle.fluid import compiler, Program, program_guard
T
tangwei12 已提交
27

28

L
liym27 已提交
29
# Situation 1: Attr(shape) is a list(without tensor)
30
class TestFillConstantOp1(OpTest):
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
46

47 48 49 50 51 52 53 54 55 56 57 58 59
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


60
class TestFillConstantOp3(OpTest):
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
    def setUp(self):
        '''Test fill_constant op with specified int64 value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
76

77 78 79 80 81 82 83 84 85 86 87 88 89
    def setUp(self):
        '''Test fill_constant op with specified int value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


90 91 92
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFillConstantBF16Op(OpTest):
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.dtype = np.uint16
        self.inputs = {}
        self.attrs = {
            'shape': [123, 92],
            'value': 3.8,
            'dtype': core.VarDesc.VarType.BF16
        }
        self.outputs = {'Out': convert_float_to_uint16(np.full((123, 92), 3.8))}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)


112
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
113

T
tangwei12 已提交
114 115 116 117 118 119
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
120 121 122 123
        fill_constant_op = Operator("fill_constant",
                                    shape=[123, 92],
                                    value=3.8,
                                    Out='Out')
T
tangwei12 已提交
124 125 126
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
127 128 129 130
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

        self.assertTrue(np.array_equal(result_array, full_array))
T
tangwei12 已提交
131 132 133

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
134 135 136
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
137 138 139 140
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
141 142
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
143

L
liym27 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
168

L
liym27 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
192

L
liym27 已提交
193 194 195 196 197 198 199
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
200

L
liym27 已提交
201 202 203 204 205 206 207 208
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
209

L
liym27 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
228 229
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
230

W
wangchaochaohu 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("float32")
        }
        self.attrs = {'value': self.value + 1.0}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output()


# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
255

W
wangchaochaohu 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("int32")
        }
        self.attrs = {'value': self.value, 'dtype': 2}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3
        self.dtype = np.int32

    def test_check_output(self):
        self.check_output()


278
# Test python API
279
class TestFillConstantAPI(unittest.TestCase):
280

L
liym27 已提交
281
    def test_api(self):
282

283
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)
284
        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        shape_tensor_int32 = fluid.data(name="shape_tensor_int32",
                                        shape=[2],
                                        dtype="int32")
        shape_tensor_int64 = fluid.data(name="shape_tensor_int64",
                                        shape=[2],
                                        dtype="int64")

        out_1 = fluid.layers.fill_constant(shape=[1, 2],
                                           dtype="float32",
                                           value=1.1)

        out_2 = fluid.layers.fill_constant(shape=[1, positive_2_int32],
                                           dtype="float32",
                                           value=1.1)

        out_3 = fluid.layers.fill_constant(shape=[1, positive_2_int64],
                                           dtype="float32",
                                           value=1.1)

        out_4 = fluid.layers.fill_constant(shape=shape_tensor_int32,
                                           dtype="float32",
                                           value=1.1)

        out_5 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype="float32",
                                           value=1.1)

        out_6 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype=np.float32,
                                           value=1.1)

        val1 = fluid.layers.fill_constant(shape=[1],
                                          dtype=np.float32,
                                          value=1.1)
        val2 = fluid.layers.fill_constant(shape=[1],
                                          dtype=np.float64,
                                          value=1.1)
        out_7 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype=np.float32,
                                           value=val1)

        out_8 = fluid.layers.fill_constant(shape=shape_tensor_int64,
                                           dtype=np.float32,
                                           value=val2)
W
wangchaochaohu 已提交
330

L
liym27 已提交
331
        exe = fluid.Executor(place=fluid.CPUPlace())
332
        res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8 = exe.run(
L
liym27 已提交
333
            fluid.default_main_program(),
334 335 336 337
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
338
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8])
L
liym27 已提交
339 340 341 342

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
343 344
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
345
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
346
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
347 348 349 350
        assert np.array_equal(res_8, np.full([1, 2], 1.1, dtype="float32"))


class TestFillConstantImperative(unittest.TestCase):
351

352 353 354 355
    def test_api(self):
        with fluid.dygraph.guard():
            data1 = np.array([1, 2]).astype('int32')
            data2 = np.array([1.1]).astype('float32')
356
            data3 = np.array([88]).astype('int32')
357 358
            shape = fluid.dygraph.to_variable(data1)
            val = fluid.dygraph.to_variable(data2)
359
            value = fluid.dygraph.to_variable(data3)
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
            res1 = fluid.layers.fill_constant(shape=[1, 2],
                                              dtype='float32',
                                              value=1.1)
            res2 = fluid.layers.fill_constant(shape=shape,
                                              dtype='float32',
                                              value=1.1)
            res3 = fluid.layers.fill_constant(shape=shape,
                                              dtype='float32',
                                              value=val)
            res4 = fluid.layers.fill_constant(shape=shape,
                                              dtype='int32',
                                              value=value)
            assert np.array_equal(res1.numpy(),
                                  np.full([1, 2], 1.1, dtype="float32"))
            assert np.array_equal(res2.numpy(),
                                  np.full([1, 2], 1.1, dtype="float32"))
            assert np.array_equal(res3.numpy(),
                                  np.full([1, 2], 1.1, dtype="float32"))
            assert np.array_equal(res4.numpy(),
                                  np.full([1, 2], 88, dtype="int32"))
L
liym27 已提交
380

381 382 383 384 385 386 387 388 389 390
    def test_nan(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.nan)
            self.assertTrue(np.isnan(res.numpy().item(0)))

    def test_inf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.inf)
            self.assertTrue(np.isinf(res.numpy().item(0)))

L
Leo Chen 已提交
391 392 393 394 395 396
    def test_ninf(self):
        with fluid.dygraph.guard():
            res = fluid.layers.fill_constant([1], 'float32', np.NINF)
            self.assertTrue(np.isinf(res.numpy().item(0)))
            self.assertEqual(np.NINF, res.numpy().item(0))

L
liym27 已提交
397

398
class TestFillConstantOpError(unittest.TestCase):
399

400 401
    def test_errors(self):
        with program_guard(Program(), Program()):
L
liym27 已提交
402
            #for ci coverage
403
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
404 405 406 407 408 409 410 411 412 413 414 415
            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[1],
                              value=5,
                              dtype='uint4')

            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[1.1],
                              value=5,
                              dtype='float32',
                              out=x1)
416

417
            # The argument dtype of fill_constant_op must be one of bool, float16,
418
            #float32, float64, uint8, int16, int32 or int64
419
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
420

421 422 423 424 425 426
            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[1],
                              value=5,
                              dtype='float64',
                              out=x2)
427

428
            x3 = np.random.randn(100, 100).astype('int32')
429 430 431 432 433 434
            self.assertRaises(TypeError,
                              fluid.layers.fill_constant,
                              shape=[100, 100],
                              value=5,
                              dtype='float64',
                              out=x3)
435

436
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
437 438 439 440 441
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

442
            # The argument shape's size of fill_constant_op must not be 0.
L
liym27 已提交
443 444 445 446 447
            def test_shape_size():
                fluid.layers.fill_constant(shape=[], dtype="float32", value=1)

            self.assertRaises(AssertionError, test_shape_size)

448 449
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
450 451 452 453 454 455
                shape = fluid.data(name="shape_tensor",
                                   shape=[2],
                                   dtype="float32")
                fluid.layers.fill_constant(shape=shape,
                                           dtype="float32",
                                           value=1)
456 457 458 459

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
460 461 462 463 464 465
                shape = fluid.data(name="shape_tensor_list",
                                   shape=[1],
                                   dtype="bool")
                fluid.layers.fill_constant(shape=[shape, 2],
                                           dtype="float32",
                                           value=1)
466 467 468

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

469

470
class TestFillConstantOp_ValueTensorBf16(OpTest):
471

472 473 474 475 476 477 478
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
479 480
            "ShapeTensor":
            np.array(self.shape).astype("int32"),
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            'ValueTensor':
            convert_float_to_uint16(np.array([self.value]).astype("float32"))
        }
        self.attrs = {'value': self.value, 'dtype': core.VarDesc.VarType.BF16}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.0
        self.dtype = np.uint16
        self.mkldnn_data_type = "bfloat16"

    def test_check_output(self):
        self.check_output_with_place(core.CPUPlace())


497
if __name__ == "__main__":
498
    paddle.enable_static()
499
    unittest.main()