concat_op.cc 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
1
123malin 已提交
16

17
#include <paddle/fluid/platform/complex.h>
18

P
phlrain 已提交
19
#include <memory>
S
Siddharth Goyal 已提交
20
#include <string>
21 22
#include <vector>

23
#include "paddle/fluid/framework/infershape_utils.h"
24
#include "paddle/phi/infermeta/multiary.h"
25
#include "paddle/phi/kernels/funcs/concat_funcs.h"
26

P
phlrain 已提交
27 28 29 30
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

31 32
namespace paddle {
namespace operators {
33
using Tensor = phi::DenseTensor;
34 35 36 37 38

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

P
phlrain 已提交
39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
42
    auto inputs = ctx.MultiInput<phi::DenseTensor>("X");
43 44
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
45 46
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
47
        input_data_type = framework::TransToProtoVarType(input->dtype());
48 49 50 51 52
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
1
123malin 已提交
53 54
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Concat OP are Empty!"));
55
    }
P
phlrain 已提交
56
#ifdef PADDLE_WITH_MKLDNN
57
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
58 59
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
P
phlrain 已提交
60 61 62 63 64 65
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
66 67

  framework::OpKernelType GetKernelTypeForVar(
68
      const std::string &var_name,
69
      const phi::DenseTensor &tensor,
70 71 72 73
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
74 75
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
76
  }
77 78 79 80
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
81
  void Make() override {
82 83 84
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
    AddAttr<int>("axis",
85 86 87 88
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
89 90
        .SetDefault(0)
        .SupportTensor();
91 92 93 94 95 96
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
97 98 99 100 101 102 103 104 105 106 107 108 109
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
110 111 112
  }
};

113 114
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
115
  using framework::OperatorWithKernel::OperatorWithKernel;
116

117
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
118 119 120
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
121 122

    ctx->ShareAllLoD(in_x, out_x_g_n);
123
  }
P
phlrain 已提交
124 125 126 127

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
128 129 130 131 132 133 134 135 136
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    // extra checking if attr "use_mkldnn" exist is needed because
    // test_reverse_op is calling concat_grad kernel without setting
    // "use_mkldnn" to any value
    if (ctx.HasAttr("use_mkldnn") &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
137 138
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
139 140 141 142 143
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
phlrain 已提交
144
  }
145 146

  framework::OpKernelType GetKernelTypeForVar(
147
      const std::string &var_name,
148
      const phi::DenseTensor &tensor,
149 150 151 152
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
153 154
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
155
  }
P
phlrain 已提交
156 157
};

158
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInferer, "X");
P
phlrain 已提交
159

H
hong 已提交
160 161
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
162
 public:
H
hong 已提交
163
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
164 165

 protected:
166
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
167
    op->SetType("concat_grad");
H
hong 已提交
168
    op->SetInput("X", this->Input("X"));
H
hong 已提交
169 170 171
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
172 173 174
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
175
  }
176 177
};

C
ceci3 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191
template <typename T>
class ConcatDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("concat");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

192 193 194 195
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
196

197 198
DECLARE_INFER_SHAPE_FUNCTOR(concat,
                            ConcatInferShapeFunctor,
199
                            PD_INFER_META(phi::ConcatInferMeta));
200

201 202 203
REGISTER_OPERATOR(concat,
                  ops::ConcatOp,
                  ops::ConcatOpMaker,
H
hong 已提交
204
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
205 206
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>,
                  ConcatInferShapeFunctor);
207 208
REGISTER_OPERATOR(concat_grad,
                  ops::ConcatOpGrad,
C
ceci3 已提交
209 210
                  ops::ConcatDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatDoubleGradOpMaker<paddle::imperative::OpBase>,
211
                  ops::ConcatOpGradNoNeedBufferVarInferer);