concat_op.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/concat_op.h"
1
123malin 已提交
16

17
#include <paddle/fluid/platform/complex.h>
P
phlrain 已提交
18
#include <memory>
S
Siddharth Goyal 已提交
19
#include <string>
20
#include <vector>
21
#include "paddle/fluid/framework/infershape_utils.h"
22

23
#include "paddle/phi/infermeta/multiary.h"
24
#include "paddle/phi/kernels/funcs/concat_funcs.h"
25

P
phlrain 已提交
26 27 28 29
#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

30 31
namespace paddle {
namespace operators {
32
using Tensor = framework::Tensor;
33 34 35 36 37

class ConcatOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

P
phlrain 已提交
38 39 40
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
41
    auto inputs = ctx.MultiInput<Tensor>("X");
42 43
    auto input_data_type = framework::proto::VarType::Type(0);
    bool flag = 0;
44 45
    for (auto *input : inputs) {
      if (input->IsInitialized() && input->numel() > 0) {
46
        input_data_type = framework::TransToProtoVarType(input->dtype());
47 48 49 50 51
        flag = 1;
        break;
      }
    }
    if (flag == 0) {
1
123malin 已提交
52 53
      PADDLE_THROW(platform::errors::InvalidArgument(
          "All Inputs of Concat OP are Empty!"));
54
    }
P
phlrain 已提交
55
#ifdef PADDLE_WITH_MKLDNN
56
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
P
phlrain 已提交
57 58 59 60 61 62 63
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
64 65 66 67 68 69 70 71 72 73

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
74 75 76 77
};

class ConcatOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
78
  void Make() override {
79 80
    AddInput("X", "Input tensors of concat operator.").AsDuplicable();
    AddOutput("Out", "Output tensor of concat operator.");
P
phlrain 已提交
81 82 83
    AddAttr<bool>(
        "use_mkldnn",
        "(bool, default false) Indicates if MKL-DNN kernel will be used")
Z
zmx 已提交
84 85
        .SetDefault(false)
        .AsExtra();
86
    AddAttr<int>("axis",
87 88 89 90
                 "The axis along which the input tensors will be concatenated."
                 "The axis could also be negative numbers. Negative axis is "
                 "interpreted as counting from the end of the rank."
                 "i.e., axis + rank(X) th dimension.")
91
        .SetDefault(0);
92 93 94 95 96 97
    AddInput("AxisTensor",
             "(Tensor) The axis along which the input tensors will be "
             "concatenated.  "
             "It has higher priority than Attr(axis). "
             "The shape of AxisTensor must be [1].")
        .AsDispensable();
98 99 100 101
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
Z
zmx 已提交
102 103
        .SetDefault(false)
        .AsExtra();
104 105 106 107
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
zmx 已提交
108 109
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
110 111 112 113 114 115 116 117 118 119 120 121 122
    AddComment(R"DOC(
Concat Operator.

Concatenate the input tensors along dimension axis.
Examples:
  Input[0] = [[1,2],[3,4]]
  Input[1] = [[5,6]]
  axis = 0
  Output = [[1,2],
            [3,4],
            [5,6]]

)DOC");
123 124 125
  }
};

126 127
class ConcatOpGrad : public framework::OperatorWithKernel {
 public:
P
phlrain 已提交
128
  using framework::OperatorWithKernel::OperatorWithKernel;
129

130
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduo 已提交
131 132 133
    auto in_x = "X";
    auto out_x_g_n = framework::GradVarName(in_x);
    ctx->SetOutputsDim(out_x_g_n, ctx->GetInputsDim(in_x));
H
hong 已提交
134 135

    ctx->ShareAllLoD(in_x, out_x_g_n);
136
  }
P
phlrain 已提交
137 138 139 140

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    // extra checking if attr "use_mkldnn" exist is needed because
    // test_reverse_op is calling concat_grad kernel without setting
    // "use_mkldnn" to any value
    if (ctx.HasAttr("use_mkldnn") &&
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
P
phlrain 已提交
156
  }
157 158 159 160 161 162 163 164 165 166

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxisTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
P
phlrain 已提交
167 168
};

169
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ConcatOpGradNoNeedBufferVarInferer, "X");
P
phlrain 已提交
170

H
hong 已提交
171 172
template <typename T>
class ConcatGradOpMaker : public framework::SingleGradOpMaker<T> {
P
phlrain 已提交
173
 public:
H
hong 已提交
174
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
P
phlrain 已提交
175 176

 protected:
177
  void Apply(GradOpPtr<T> op) const override {
P
phlrain 已提交
178
    op->SetType("concat_grad");
H
hong 已提交
179
    op->SetInput("X", this->Input("X"));
H
hong 已提交
180 181 182
    if (this->HasInput("AxisTensor")) {
      op->SetInput("AxisTensor", this->Input("AxisTensor"));
    }
H
hong 已提交
183 184 185
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
    op->SetAttrMap(this->Attrs());
P
phlrain 已提交
186
  }
187 188
};

C
ceci3 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202
template <typename T>
class ConcatDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("concat");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

203 204 205 206
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
207 208 209 210

DELCARE_INFER_SHAPE_FUNCTOR(concat, ConcatInferShapeFunctor,
                            PT_INFER_META(phi::ConcatInferMeta));

211
REGISTER_OPERATOR(concat, ops::ConcatOp, ops::ConcatOpMaker,
H
hong 已提交
212
                  ops::ConcatGradOpMaker<paddle::framework::OpDesc>,
213 214
                  ops::ConcatGradOpMaker<paddle::imperative::OpBase>,
                  ConcatInferShapeFunctor);
P
phlrain 已提交
215
REGISTER_OPERATOR(concat_grad, ops::ConcatOpGrad,
C
ceci3 已提交
216 217
                  ops::ConcatDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConcatDoubleGradOpMaker<paddle::imperative::OpBase>,
218
                  ops::ConcatOpGradNoNeedBufferVarInferer);
219

C
chengduoZH 已提交
220 221
REGISTER_OP_CPU_KERNEL(
    concat_grad,
222 223
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>,
224
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, bool>,
225
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
226 227
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::float16>,
L
liuyuhui 已提交
228
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, int>,
229 230 231 232 233
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::complex<float>>,
    ops::ConcatGradKernel<paddle::platform::CPUDeviceContext,
                          paddle::platform::complex<double>>);